• Title/Summary/Keyword: Spatial resolution

Search Result 2,556, Processing Time 0.022 seconds

Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area (고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정)

  • Yoon, Seong-sim;Lee, Byongju;Choi, Youngjean
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.

Spatio-Temporal Resolution Analysis based on Landsat/AMSR2 Soil Moisture (Landsat/AMSR2 기반 토양수분의 시공간적 해상도 분석)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • The purpose of this study is to determine the spatial and temporal resolutions that can represent land surface characteristics comprised of various land use using Landsat/AMSR2-based soil moisture data. We estimated the Landsat (30 m×30 m)-based soil moisture values using the soil moisture regression model. Then, the Landsat (30 m×30 m)-based soil moisture (reference values) were resampled to the relatively coarse resolutions from 1 km to 4 km, respectively. Comparing the reference values to the resampled soil moisture values, we confirmed that uncertainties were increased with the spatial resolutions of 2 km~4 km indicating that the spatial resolution of 1 km×1 km is required to represent the complicated land surface. Also, the AMSR2 soil moisture values have less uncertainties compared to SMAP data with the temporal resolution of 1~2 days. Thus, our findings can be useful for various areas such as agriculture, hydrology, forest, etc.

Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges, and Future Directions

  • Yoo, Cheolhee;Im, Jungho;Park, Sumin;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.609-626
    • /
    • 2020
  • Satellite-based land surface temperature (LST) has been used as one of the major parameters in various climate and environmental models. Especially, Moderate Resolution Imaging Spectroradiometer (MODIS) LST is the most widely used satellite-based LST product due to its spatiotemporal coverage (1 km spatial and sub-daily temporal resolutions) and longevity (> 20 years). However, there is an increasing demand for LST products with finer spatial resolution (e.g., 10-250 m) over regions such as urban areas. Therefore, various methods have been proposed to produce high-resolution MODIS-like LST less than 250 m (e.g., 100 m). The purpose of this review is to provide a comprehensive overview of recent research trends and challenges for the downscaling of MODIS LST. Based on the recent literature survey for the past decade, the downscaling techniques classified into three groups-kernel-driven, fusion-based, and the combination of kernel-driven and fusion-based methods-were reviewed with their pros and cons. Then, five open issues and challenges were discussed: uncertainty in LST retrievals, low thermal contrast, the nonlinearity of LST temporal change, cloud contamination, and model generalization. Future research directions of LST downscaling were finally provided.

Change Detection Using the IKONOS Satellite Images (IKONOS 위성영상을 이용한 변화 탐지)

  • Kang, Gil-Seon;Shin, Sang-Cheul;Cho, Kyu-Jon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.61-66
    • /
    • 2003
  • The change detection using the satellite imagery and airphotos has been carried out in the application of terrain mapping, environment, forestry, facility detection, etc. The low-spatial resolution data such as Landsat, NOAA satellite images is generally used for automatic change detection, while on the other hand the high-spatial resolution data is used for change detection by image interpretation. The research to integrate automatic method with manual change detection through the high-spatial resolution satellite image is performed. but the problem such as shadow, building 'lean' due to perspective geometry and precision geocorrection was found. In this paper we performed change detection using the IKONOS satellite images, and present the concerning problem.

  • PDF

Simultaneous Estimation of Spatial Frequency and Phase Based on an Improved Component Cross-Correlation Algorithm for Structured Illumination Microscopy

  • Zhang, Yinxin;Deng, Jiajun;Liu, Guoxuan;Fei, Jianyang;Yang, Huaidong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • Accurate estimation of spatial frequencies and phases for illumination patterns are essential to reconstructing super-resolution images in structured illumination microscopy (SIM). In this manuscript, we propose the improved component cross-correlation (ICC) algorithm, which is based on optimization of the cross-correlation values of the overlapping information between various spectral components. Compared to other algorithms for spatial-frequency and phase determination, the results calculated by the ICC algorithm are more accurate when the modulation depths of the illumination patterns are low. Moreover, the ICC algorithm is able to calculate the spatial frequencies and phases simultaneously. Simulation results indicate that even if the modulation depth is lower than 0.1, the ICC algorithm still estimates the parameters precisely; the images reconstructed by the ICC algorithm are much clearer than those reconstructed by other algorithms. In experiments, our home-built SIM system was used to image bovine pulmonary artery endothelial (BPAE) cells. Drawing support from the ICC algorithm, super-resolution images were reconstructed without artifacts.

Recent advances in spatially resolved transcriptomics: challenges and opportunities

  • Lee, Jongwon;Yoo, Minsu;Choi, Jungmin
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.113-124
    • /
    • 2022
  • Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at single-molecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 ㎛ resolution. Unfortunately, neither imaging-based technology nor capture-based method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization.

Evaluation of Spatial Uniformity about Resolution and Sensitivity of a 'fixed focusing type SPECT' (고정식 초점형 SPECT에 있어, 선예도와 감도의 공간 균일성에 대한 평가)

  • Kim, Jaeil;Lim, Jeongjin;Cho, Seongwook;Noh, Kyeongwoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2019
  • Purpose At now, there are many kind of dedicated heart SPECT machine in clinical nuclear medicine. Among those, the fixed focusing type SPECT can make a good quality, quantity image because a detectors of this SPECT arranged forward a special ROI and didn't rotate around of body. So, in this paper, we will evaluate a spatial uniformity about resolution and sensitivity at a same plane of a fixed focusing type SPECT. Materials and Methods We used D-SPECT as a fixed focusing type SPECT and Cario MD as a rotated parallel type SPECT to comparing each other. We injected $^{99m}Tc(14.8MBq/1cc)$ to 10 capillary tube (diameter=1mm), and we set those line sources a tfield of view of each SPECT. And then we acquired SPECT date, we applied are construction by recommended methods. By using two tomography images, we calculated a full width of half maximum as a resolution and total counts as a sensitivity, and we compared a CV (coefficientofvariation) values between two images as a spatial uniformity. Results In case of D-SPECT, a CV of resolution and sensitivity are 7.45%, 12.34%. In case of Cario MD, an CV of resolution and sensitivity are 12.49%, 21.84% Conclusion As a results, CV of resolution and sensitivity of a fixed focusing type SPECT is 67.75%, 77.00% higher than ones of a rotated parallel type SPECT. It means that a fixed focusing type SPECT is more uniformed, because this new SPECT can reduce a motion blur artifact by rotating detector around body, also all of detector that made by semiconductor arrange forward a special FOV like heart.

Design of Gamma Camera with Diverging Collimator for Spatial Resolution Improvement (공간분해능 향상을 위한 확산형 콜리메이터 기반의 감마카메라 설계)

  • Lee, Seung-Jae;Jang, Yeongill;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.661-666
    • /
    • 2019
  • Diverging collimators is used to obtain reduced images of an object, or to detect a wide filed-of-view (FOV) using a small gamma camera. In the gamma camera using the diverging collimators, the block scintillator, and the pixel scintillator array, gamma rays are obliquely incident on the scintillator surface when the source is located the periphery of the FOV. Therefore, the spatial resolution is reduced because it is obliquely detected in depth direction. In this study, we designed a novel system to improve the spatial resolution in the periphery of the FOV. Using a tapered crystal array to configure the scintillation pixels to coincide with the angle of the collimator's hole allows imaging to one scintillation pixel location, even if events occur to different depths. That is, even if is detected at various points in the diagonal direction, the gamma rays interact with one crystal pixel, so resolution does not degrade. The resolution of the block scintillator and the tapered crystal array was compared and evaluated through Geant4 Application for Tomographic Emission (GATE) simulation. The spatial resolution of the obtained image was 4.05 mm in the block scintillator and 2.97 mm in the tapered crystal array. There was a 26.67% spatial resolution improvement in the tapered crystal array compared to the block scintillation.

Landsat 8-based High Resolution Surface Broadband Albedo Retrieval (Landsat 8 위성 기반 고해상도 지표면 광대역 알베도 산출)

  • Lee, Darae;Seo, Minji;Lee, Kyeong-sang;Choi, Sungwon;sung, Noh-hun;Kim, Honghee;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.741-746
    • /
    • 2016
  • Albedo is one of the climate variables that modulate absorption of solar energy, and its retrieval is important process for climate change study. High spatial resolution and long-term consistent periods are important considerations in order to efficiently use the retrieved albedo data. This study retrieved surface broadband albedo based on Landsat 8 as high resolution which is consistent with Landsat 7. First of all, we analyzed consistency of Landsat 7 channel and Landsat 8 channel. As a result, correlation coefficient(R) on all channels is average 0.96. Based on this analysis, we used multiple linear regression model using Landsat 7 albedo, which is being used in many studies, and Landsat 8 reflectance channel data. The regression coefficients of each channel calculated by regression analysis were used to derive a formula for converting the Landsat 8 reflectance channel data to broadband albedo. After Landsat 8 albedo calculated using the derived formula is compared with Landsat 7 albedo data, we confirmed consistency of two satellite using Root Mean Square Error (RMSE), R-square ($R^2$) and bias. As a result, $R^2$ is 0.89 and RMSE is 0.003 between Landsat 7 albedo and Landsat 8 albedo.

Impact Analysis of Deep Learning Super-resolution Technology for Improving the Accuracy of Ship Detection Based on Optical Satellite Imagery (광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석)

  • Park, Seongwook;Kim, Yeongho;Kim, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.559-570
    • /
    • 2022
  • When a satellite image has low spatial resolution, it is difficult to detect small objects. In this research, we aim to check the effect of super resolution on object detection. Super resolution is a software method that increases the resolution of an image. Unpaired super resolution network is used to improve Sentinel-2's spatial resolution from 10 m to 3.2 m. Faster-RCNN, RetinaNet, FCOS, and S2ANet were used to detect vessels in the Sentinel-2 images. We experimented the change in vessel detection performance when super resolution is applied. As a result, the Average Precision (AP) improved by at least 12.3% and up to 33.3% in the ship detection models trained with the super-resolution image. False positive and false negative cases also decreased. This implies that super resolution can be an important pre-processing step in object detection, and it is expected to greatly contribute to improving the accuracy of other image-based deep learning technologies along with object detection.