• Title/Summary/Keyword: Spatial range

Search Result 1,387, Processing Time 0.028 seconds

Sources Identification of Anthropogenic Pb in Ulleung Basin Sediments using Stable Pb Isotope Ratios, East/Japan Sea (동해 울릉분지 시추 퇴적물에서 안정 Pb 동위원소를 이용한 Pb의 기원 추정)

  • Choi, Man-Sik;Uoo, Jun-Sik;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.315-327
    • /
    • 2007
  • This study investigated temporal and spatial variation of Pb and stable Pb isotopes accumulated in Ulleung Basin core sediments (4) using MC ICP/MS in order to identify the sources of anthropogenic Pb in the East/Japan Sea. Leached (1M HCl) Pb concentration and isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were nearly constant during 300 yrs past than 1930, but increased up to twice in concentration and as much as 3.41% (1.70%) after 2000. On the other hand, residual Pb concentrations were nearly constant for past 400 yrs. The accumulation rates of anthropogenic Pb in the basin area were in the range of $3.1-3.5mg/m^2/yr$, which were similar levels to total atmospheric Pb deposition fluxes from 1990s to the present. In the slope area, more increase of anthropogenic Pb accumulation than the levels expected from mass accumulation rate could be found after the middle of 1990s. From the detailed evaluation for the temporal and spatial variation of accumulation rate and isotope ratios of anthropogenic Pb, we proposed probable sources and pathways of anthropogenic Pb. Pb emmision by coal burning from the China and Korea initiated the accumulation of anthropogenic Pb in the sediments of East/Japan Sea from 1930s. The accumulation of Pb increased by the addition of anti-nocking agents from both countries untill the beginning of 1990s, but from the middle of 1990s to the present, the phase-out of gasoline additives and the rapid increase of coal burning from the China maintained the atmospheric Pb levels in the Ulleung basin nearly similar to before. However, the local sources within this basin might take an important role in the rapid increase of anthropogenic Pb accumulation in slope areas from the middle of 1990s.

Utility of Climate Model Information For Water Resources Management in Korea

  • Jeong, Chang-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.37-45
    • /
    • 2008
  • It is expected that conditions of water resources will be changed in Korea in accordance with world wide climate change. In order to deal with this problem and find a way of minimizing the effect of future climate change, the usefulness of climate model simulation information is examined in this study. The objective of this study is to assess the applicability of GCM (General Circulation Model) information for Korean water resources management through uncertainty analysis. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. An estimator that accounts for climate model simulation and spatial association between the GCM data and observed data is used. Atmospheric general circulation model (AGCM) simulations done by ECMWF (European Centre for Medium-Range Weather Forecasts) with a resolution of $2^{\circ}{\times}2^{\circ}$, and METRI (Meteorological Research Institute, Korea) with resolutions of $2^{\circ}{\times}2^{\circ}$ and $4^{\circ}{\times}5^{\circ}$, were used for indicator variables, while observed mean areal precipitation (MAP) data, discharge data and mean areal temperature data on the seven major river basins in Korea were used for target variables. The results show that GCM simulations are useful in discriminating the high from the low of the observed precipitation, discharge, and temperature values. Temperature especially can be useful regardless of model and season.

Application of Geostatistical Analysis Method to Detect the Direction of Sea Surface Warm Flows (해수면 난류수 유동방향 탐지를 위한 지구통계학적 분석기법 적용)

  • Choi, Hyun-Woo;Kim, Hyun-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.168-178
    • /
    • 2006
  • In recent years, an ingress of mass jellyfish into cooling water intake system causes interruption of electric power production at the Uljin nuclear power plant. Therefore, monitering and forecast on the mass ingress of marine organisms are demanded as one of the early preventing measurements. Sea water movement is a major factor on the ingress of marine organisms like Moon jellyfish which has weak self-mobile ability. When sea surface flow direction adjacent to the Uljin is the northwest, the jellyfish on the Tsushima warm currents move to the Uljin power plant. To detect the direction of sea surface warm flows, the spatial range with $25km{\times}25km$ is set up and NOAA sea surface temperature(SST) data are collected in this area. For the statistical analysis, the SST data are made as GIS point data and geostatistical analysis of ArcGIS is used. Analyzing directional semivariogram, the anisotropy of the SST point data are calculated and warm flow direction is detected. This experimental results are expected to use as an element technology for the early warning system development of mass jellyfish ingress in power plant.

  • PDF

Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea (고창 개방형 조간대 표층 퇴적물의 2014년 계절 변화)

  • Kang, Sol-Ip;Ryang, Woo-Hun;Jin, Jae-Hwa;Chun, Seung-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.89-106
    • /
    • 2016
  • The Gochang open-coast intertidal flat is located in the southwestern coast of Korea (the eastern part of the Yellow Sea), characterized by macro-tidal range, an open-coast type, and sand substrates. This study has investigated seasonal variation in sedimentary facies of surface sediments in the Gochang intertidal flat. In the four seasons of February, May, August, and November, 2014, surface sediments of 252 sites in total were sampled and analyzed along three survey lines. The surface sediments of the Gochang intertidal flat in 2014 consisted mainly of fine-grained sand sediments showing a trend in grain size to be coarser in winter and finer in summer. Based on seasonal wave and tidal level data recorded near the study area, it was interpreted that the seasonal effects of wave were stronger than those of tide as a factor controlling surface sedimentation. High waves in winter resulted in the coarsening trend of grain size in surface sediments, whereas, during summer time, the sediments became finer by relatively low waves. Spatial sedimentary facies of the Gochang intertidal flat in 2014 represented that seasonal deviation of the upper tidal zone was larger than that of the lower tidal zone, hence sediments getting coarser in grain size and poorly sorted in the upper tidal zone. From upper to lower tidal zone, the grain size became finer and sediments were better-sorted, showing smaller seasonal deviations.

Design and Performance Analysis of an Off-Axis Three-Mirror Telescope for Remote Sensing of Coastal Water (연안 원격탐사를 위한 비축 삼반사경 설계와 성능 분석)

  • Oh, Eunsong;Kang, Hyukmo;Hyun, Sangwon;Kim, Geon-Hee;Park, YoungJe;Choi, Jong-Kuk;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • We report the design and performance analysis of an off-axis three-mirror telescope as the fore optics for a new hyperspectral sensor aboard a small unmanned aerial vehicle (UAV), for low-altitude coastal remote sensing. The sensor needs to have at least 4 cm of spatial resolution at an operating altitude of 500 m, $4^{\circ}$ field of view (FOV), and a signal to noise ratio (SNR) of 100 at 660 nm. For these performance requirements, the sensor's optical design has an entrance pupil diameter of 70 mm and an F-ratio of 5.0. The fore optics is a three-mirror system, including aspheric primary and secondary mirrors. The optical performance is expected to reach $1/15{\lambda}$ in RMS wavefront error and 0.75 in MTF value at 660 nm. Considering the manufacturing and assembling phase, we determined the alignment compensation due to the tertiary mirror from the sensitivity, and derived the tilt-tolerance range to be 0.17 mrad. The off-axis three-mirror telescope, which has better performance than the fore optics of other hyperspectral sensors and is fitted for a small UAV, will contribute to ocean remote-sensing research.

Near-Infrared Imaging Spectroscopic Survey in Space

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Song, Yong-Seon;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2015
  • To probe the star formation in local and early Universe, the NISS with a capability of imaging spectroscopy in the near-infrared is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with 15cm aperture was optimized to obtain a wide field of view (FoV) of $2deg.{\times}2deg.$ as well as a wide spectral coverage from 0.9 to $3.8{\mu}m$. The opto-mechanical structure was designed to be safe enough to endure in both the launching condition and the space environment. The dewar will operate $1k{\times}1k$ infrared sensor at 80K stage. The NISS will be launched in 2017 and explore the large areal near-infrared sky up to $200deg.^2$ in order to get both spatial and spectral information for astronomical objects. As an extension of the NISS, KASI is planning to participate in a new small space mission together with NASA. The promising candidate, SPHEREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is an all-sky survey satellite designed to reveal the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. Though the survey concept is similar to that of the NISS, the SPHEREx will perform the first near-infrared all-sky imaging spectroscopic survey with the wider spectral range from 0.7 to $5{\mu}m$ and the wider FoV of $3.5deg.{\times}7deg.$ Here, we report the current status of the NISS and introduce new mission for the near-infrared imaging spectroscopic survey.

  • PDF

Determination of Precipitable Water Vapor from Combined GPS/GLONASS Measurements and its Accuracy Validation (GPS/GLONASS 통합관측자료를 이용한 가강수량 산출과 정확도 검증)

  • Sohn, Dong Hyo;Park, Kwan Dong;Kim, Yeon Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.95-100
    • /
    • 2013
  • Several observation equipments are being used for determination of the water vapor content and precipitable water vapor (PWV) because the water vapor is highly variable temporally and spatially. In this study, we used GNSS systems such as GPS and GLONASS in standalone and combined modes to compute PWV and validated their accuracy with respect to the results of other water-vapor monitoring systems. The other systems used were radiosonde and microwave radiometer, and the comparisons were convenient because all three systems were collocated at the test site. The differences of PWW were in the range of 0.6-3.4 mm in the mean sense, and their standard deviations were 1.0-3.8 mm. The relatively large difference of GNSS compared with the other two systems were believed to be caused by the fact that the GNSS antenna used in this study was the kind for which the international standard of phase center variations (PCV) calibration is not available. We expect better accuracy of PWV determination and improved availability of it through integrated data processing of GPS/GLONASS when an appropriate antenna with PCV correction model is used.

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

Fabrication and Evaluation of a VHF Focusing Ultrasonic Transducer Made of PVDF Piezoelectric Film (PVDF 압전막을 이용한 초고주파 집속 초음파 트랜스듀서의 제작 및 특성 평가)

  • Yoon, Ju-Ho;Oh, Jung-Hwan;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.215-222
    • /
    • 2011
  • In order to obtain high resolution images, a focusing ultrasonic transducer operated in very high frequency (VHF) range was fabricated and its characteristics were evaluated. A 9-${\mu}m$ thick PVDF film with only one metalized surface for electric ground was adhered to a CCP (Copper-clad polyimide) film by using epoxy. It was pressed by a metal ball to form a concave surface and its rear side was filled with the epoxy. The radius of curvature and the f-number of the fabricated transducer are 7.5 mm and 1.7, respectively. The pulse-echo measurement results from a target located at the focal point showed that the frequency bandwidth was 35.0 MHz and the insertion loss near the peak frequency of approximately 40 MHz was about 60 dB. Those values agreed well with the simulation results by the KLM equivalent circuit analysis including the effect of the epoxy bonding layer. When the image of thin copper lines by the 35 MHz transducer of the UBM (Ultrasonic Backscattering Microscope) system was compared with the image by the transducer fabricated in this study, the fabricated transducer was observed that the axial resolution was improved although the lateral resolution was degraded.

Future Residential Forecasting and Recommendations of Housing Using STEEP-V Analysis (STEEP-V 방법론을 활용한 미래주거예측 및 대응방안)

  • An, Se-Yun;Lee, Sangho;Yoon, Jeong Joong;Kim, So-Yeon;Ju, Hannah;Kim, Sungwhan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.230-240
    • /
    • 2020
  • Recently, the social debate about the fourth industrial revolution has been actively developed, and it is predicted that the 4th Industrial Revolution will have a great influence on our society, cities, residential and industrial spaces. Especially, it is anticipated that the technological development of the 4th Industrial Revolution will cause a wide range of changes in residential style and culture. Therefore, it is necessary to grasp the direction of future change in advance and proactively respond to future tasks and strategies need. The purpose of this study is to predict the direction and characteristics of the mid - to long - term changes in future housing that will be brought about by the 4th Industrial Revolution and to define future social, spatial and technological impacts and issues and to find policy measures for them. STEEP (V) as a methodology for forecasting future has been used. It is a process of deriving technical and social issues by using Big Data. It collects various keywords and draws out key issues and summarizes social change patterns related to each core issue. The proposed strategy for future housing prediction and countermeasures can be used as a basic data for future directions of housing policy and suggests a process for deriving reasonable and reasonable results from multiple data sets rather than accurate prediction.