Sources Identification of Anthropogenic Pb in Ulleung Basin Sediments using Stable Pb Isotope Ratios, East/Japan Sea

동해 울릉분지 시추 퇴적물에서 안정 Pb 동위원소를 이용한 Pb의 기원 추정

  • Choi, Man-Sik (Division of Earth and Environmental Sciences, Chungnam National University) ;
  • Uoo, Jun-Sik (Division of Earth and Environmental Sciences, Chungnam National University) ;
  • Kim, Dong-Seon (Marine Environment Research Dept., Korea Ocean Research and Development Institute)
  • 최만식 (충남대학교 지구환경과학부) ;
  • 우준식 (충남대학교 지구환경과학부) ;
  • 김동선 (한국해양연구원 해양환경연구본부)
  • Published : 2007.11.30

Abstract

This study investigated temporal and spatial variation of Pb and stable Pb isotopes accumulated in Ulleung Basin core sediments (4) using MC ICP/MS in order to identify the sources of anthropogenic Pb in the East/Japan Sea. Leached (1M HCl) Pb concentration and isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were nearly constant during 300 yrs past than 1930, but increased up to twice in concentration and as much as 3.41% (1.70%) after 2000. On the other hand, residual Pb concentrations were nearly constant for past 400 yrs. The accumulation rates of anthropogenic Pb in the basin area were in the range of $3.1-3.5mg/m^2/yr$, which were similar levels to total atmospheric Pb deposition fluxes from 1990s to the present. In the slope area, more increase of anthropogenic Pb accumulation than the levels expected from mass accumulation rate could be found after the middle of 1990s. From the detailed evaluation for the temporal and spatial variation of accumulation rate and isotope ratios of anthropogenic Pb, we proposed probable sources and pathways of anthropogenic Pb. Pb emmision by coal burning from the China and Korea initiated the accumulation of anthropogenic Pb in the sediments of East/Japan Sea from 1930s. The accumulation of Pb increased by the addition of anti-nocking agents from both countries untill the beginning of 1990s, but from the middle of 1990s to the present, the phase-out of gasoline additives and the rapid increase of coal burning from the China maintained the atmospheric Pb levels in the Ulleung basin nearly similar to before. However, the local sources within this basin might take an important role in the rapid increase of anthropogenic Pb accumulation in slope areas from the middle of 1990s.

동해 울릉분지 퇴적물에서 오염 기원 Pb의 근원지 및 이동 경로를 추정하기 위하여 2005년 4개의 박스형 시추퇴적물(30cm 길이)을 채취하였고 연대별 Pb 농도 및 Pb 동위원소 비율을 MC ICP/MS를 이용하여 분석하였다. 연구지역에서 1M HCl 용출 부분의 Pb 농도 및 동위원소 비율($^{207}Pb/^{206}Pb$$^{208}Pb/^{206}Pb$)은 1930년 전 약 300년 동안 거의 일정한 값을 보였으나 그 후로는 현재까지 지속적으로 증가하여 농도가 거의 2배 수준, 동위원소 비율은 3.41% 및 1.70% 증가한 값을 보였고 잔류 부분의 Pb 농도는 지난 400년 동안 거의 유사하였다. 오염 Pb의 축적률은 심해분지해역에서 1990년대 이후 $3.1-3.5mg/m^2/yr$ 범위로 대기로부터의 총 강하량과 유사하였고 대륙사면에서는 퇴적물 축적률에 비례하는 정도 이상으로의 급격한 증가를 보였다. 오염 기원 Pb의 축적률과 동위원소 비율의 시 공간적인 변화 그리고 오염 기원 Pb의 동위원소 비율과 가능한 오염원 물질의 동위원소 비율의 비교를 통하여 울릉분지에 축적되는 오염 기원 Pb의 근원지와 이동 경로를 설명할 수 있었다. 즉, 1930년대부터 중국 및 한국의 석탄 연소에 의해 오염 Pb의 축적이 이루어졌으며 여기에 유연 휘발류 사용으로 1990년대 초반까지 대기로부터의 강하량이 증가하여 오염 Pb 축적률이 계속 증가하였으며 수입 광상(호주 Broken Hill)의 비율 또한 점차 증가하였다. 1990년대 이후에는 한국 및 중국의 유연 휘발류 사용 금지 및 중국의 석탄 사용 급증에 의해 심해분지 해역에서는 그 이전과 매우 유사한 오염 Pb의 축적률을 보였으나, 대륙사면 해역에서는 1990년대 이후부터 급증한 국지적 오염원의 영향으로 급격한 오염 Pb 축적이 이루어지고 있었다.

Keywords

References

  1. 김영일, 홍기훈, 김석현, 정창수, 김경련, 김창준, 최기영, 김유진, 2006. 동해병 배출해역에서의 퇴적물 중 중금속 분포 특성. 2006년도 한국해양과학기술협의회 공동학술대회 요약집. 352 p
  2. 윤 호, 1998. 서울 대기분진 화학조성의 시간변동에 관한 연구. 연세대학교, 석사학위논문, 63pp
  3. 이동수, 이용근, 허주원, 이상일, 손동헌, 김만구, 1994. 서울대기중 Pb 농도의 연도별 변화(1984-1993). 한국대기보전학회지, 10: 170-174
  4. 이희일, 2006. 황사가 해양환경에 미치는 영향 연구, 한국해양연구원, 연구보고서, BSPM373-00-1826-5, 107 pp
  5. 최만식, 박은주, 1999. 제주도 대기 분진 중 미량 금속의 농도 특성. 한국대기환경학회지, 15: 727-738
  6. 최만식, 신형선, 이창복, 2003. DGT를 이용한 새로운 연안 오염 모니터링 방법 개발. 한국과학재단 특정기초 연구보고서. R01-2001-00084, 84pp
  7. 최만식, 정창식, 신형선, 임태선, 2001. 다검출기 유도결합 플라즈마 질량 분석기를 이용한 신속하고 정밀한 Pb동위원소분석. 한국암석학회지, 10(3): 157-171
  8. 최만식, 정창식, 한정희, 박계헌, 2006. 동해 남부 해역 퇴적물에서 Pb 동위원소를 이용한 Pb의 기원 추적 연구. 자원환경지질, 39(1): 63-74
  9. 한국지질자원연구원, 2004. 광산물 수급현황. http://rik.kigam.re.kr
  10. 해양수산부, 2002. 하수슬러지 해양투기금지 계획 및 전망. 폐기물자원화, 10(3): 13-16
  11. 해양투기종합관리시스템, 2007. http://www.oceandumping.re.kr
  12. Akimoto, H., O. Toshimasa. J.-i. Kurokawa. and N. Horii, 2006. Verification of energy consumption in China during 1996-2003 by using satellite observational data. Atmos. Environ., 40: 7663-7667 https://doi.org/10.1016/j.atmosenv.2006.07.052
  13. Bollhofer, A. and K. J. R. Rosman, 2001. Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochim. Cosmochim. Acta., 65(11): 1724-1740
  14. Bollhofer, A., A. Mangini. A. Lenhard, M. Wessels. F. Giovanoli and B. Schwarz, 1994. High-resolution $^{210}Pb$ dating of Lake Constance sediments: Stable lead in Lake Constance. Environ. Geol., 24: 267-274 https://doi.org/10.1007/BF00767087
  15. Boutron, C.F., J.-P. Canndelone. and S. Hong, 1994. Past and recent changes in the large-scale tropospheric cycles of lead and otherheavy metals as documented in Antarctic and Greenland snow and ice: A review. Geochim. Cosmochim. Acta, 58: 3217-3225 https://doi.org/10.1016/0016-7037(94)90049-3
  16. Boyle, E.A., R.M. Sherrell. and M.P. Bacon, 1994. Lead variability in the western North Atlantic Ocean and central Greenland ice:for the search for decadal trends in anthropogenicemissions. Geochim. Cosmochim. Acta, 58: 3227-3238 https://doi.org/10.1016/0016-7037(94)90050-7
  17. BP p.l.c., 2007. Statistical Review of World Energy 2007. www.bp.com
  18. Cha, H.J., M.S. Choi. C.-B. Lee and Shin. D.-H., 2007. Geochemistry of surface sediments in the southwestern East/Japan Sea. J. Asian Ear. Sci., 29: 685-697 https://doi.org/10.1016/j.jseaes.2006.04.009
  19. Chester, R., 1999. Marine Geochemistry. 2nd ed. Blackwell Science Ltd. UK. 506pp
  20. Choi, M.S., and Yi. H.-I, 2004. Sources identification of metal pollutants in marine aerosols collected at Jeju Islands using trace metals and stable Pb isotopes. ISMY-IV proceedings. p. 87
  21. Choi, M.S., 1998. Distribution of trace metals in the riverine, atmospheric and marine environments of the western coast of Korea. Ph.D. thesis, Seoul National Univ., Seoul, Korea, unpublished
  22. Choi, M.S., H.-I. Yi. S.Y. Yang. C.-B. Lee. and H.-J. Cha, 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Mar. Chem. 107(2): 255-274 https://doi.org/10.1016/j.marchem.2007.07.008
  23. Choi, J.Y., and Y.A. Park, 1993. Distributions and textural characters of the bottom sediments on the continental shelves of Korea. J. Kor. Oceanol. Soc., 28: 259–271
  24. Cooper, J.A., P.H. Reynolds. and J.R. Richards, 1969. Double-spike calibration of the Broken Hill standard lead. Earth Planet. Sci. Lett., 6: 467-478 https://doi.org/10.1016/0012-821X(69)90118-6
  25. Cummings, G.L., and J.R. Richards, 1975. Ore lead isotope ratios in a continuously changing Earth. Earth Planet. Sci. Lett., 28: 155-171 https://doi.org/10.1016/0012-821X(75)90223-X
  26. Dickin, A.P., 1995. Radiogenic Isotope Geology. Camb. Uni Press., 452p
  27. Flegal, A.R., K.J.R. Rosman. and M.D. Stephenson, 1987. Isotope Systematics of contaminant Leads in Monterey Bay. Environ. Sci. Technol., 21: 1075-1079 https://doi.org/10.1021/es00164a005
  28. Grousset, F.E., C.R. Quetael. B. Thomas. O.F.X Donald. C.E. Lambert. F. Guilard. and A. Monaco, 1995. Anthropogenic vs. lithogenic origins of trace elements(As, Cd, Pb, Rb, Sb, Sc, Sn Zn) in water column particles: northwestern Mediterranean Sea. Mar. Chem., 48: 291-310 https://doi.org/10.1016/0304-4203(94)00056-J
  29. Hamelin, B., F. Grousset. and E.R. Sholkovitz, 1990. Pb isotopes in surficial pelagic sediments from the North Atlantic. Geochim. Cosmochim. Acta, 54: 37-47 https://doi.org/10.1016/0016-7037(90)90193-O
  30. Hamilton, E.I., and R.J. Clifton, 1979. Isotopic abundances of lead in estuarine sediments, Swansea Bay, Bristol Channel. Est. Coast. Mar. Sci., 8: 271-278 https://doi.org/10.1016/0302-3524(79)90097-5
  31. Hinrichs, J., O. Dewllwig. and H.-J. Reumsack, 2002. Lead in sediments and suspended particulate matter of the German Bright: natural versus anthropogenic origin. Appl. Geochem., 17: 621-632 https://doi.org/10.1016/S0883-2927(01)00124-X
  32. Hong, G.H., S.H. Kim. C.S Chung. D.J. Kang. D.H. Shin. H.J. Lee. S.J. Han. 1997. $^{210}Pb$-derived sediment accumulation rates in the southwestern East/Japan Sea (Sea of Japan). Geo-mar. Lett., 17: 126–132
  33. Kang, S.-G., M.S. Choi. I.-S. Oh. D.A. Wright. and C.-H. Koh, 1999. Assessment of metal pollution in Onsan Bay, Korea using Asian periwinkle Littorina brevicula as a biomonitor. Sci. Tot. Environ., 234: 127-137 https://doi.org/10.1016/S0048-9697(99)00168-0
  34. Kim, K.H., 2007. Airborne lead concentration levels on the Korean peninsula between 1991 and 2004. Atmos. Environ., 41: 809-824 https://doi.org/10.1016/j.atmosenv.2006.08.041
  35. Kim, K.J., Y.H. Seung, 1999. Formation and movement of the ESIW as modeled by MICOM. J. Oceanol., 55: 369–382
  36. Kim, K.T., H.S Shin. C.R Lim. Y.-G. Cho. G.H. Hong. S.H. Kim. D.B. Yang. and M.S. Choi, 2000. Geochemistry of Pb in surface sediments of the Yellow Sea: Contents and speciation. J. Kor. Oceanol. Soc. 35(4): 178-191
  37. Kober, B., M. Wessels. A. Bollhfer. and A. Mangini, 1999. Pb isotopes in sediments of Lake Constance, central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere. Geochim. Cosmochim. Acta, 63: 1293-1303 https://doi.org/10.1016/S0016-7037(99)00064-2
  38. Lee, T., J.-H. Hyun, J.S. Mok and D. Kim, 2007. Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea. Geo-Mar. Lett., in press
  39. Mukai, H., N. Furuta. T. Fujii. Y. Ambe. K. Sakamoto. and T. Hashimoto, 1993. Characterization of sources of lead in the urban air of the Asia using ratios of stable lead isotopes. Environ. Sci. Technol., 27: 1347-1356 https://doi.org/10.1021/es00044a009
  40. Mukai, H., T. Machida. A. Tanaka. Y. P. Vera. and M. Uematsu. 2001a. Lead isotope ratios in the urban air of eastern and central Russia. Atmos. Environ., 35: 2783-2793 https://doi.org/10.1016/S1352-2310(00)00341-1
  41. Mukai, H., A. Tanaka. T. Fujii. and M. Nakao, 1994. Lead isotope ratios of airborne particulate matter as tracers of long-range transport of air pollutants around Japan. J. Geophy. Res., 99(D2): 3717-3726 https://doi.org/10.1029/93JD02917
  42. Mukai, H., A. Tanaka. T. Fujii. Y. Zeng. Y. Hong. J. Tang. S. Guo. H. Xue. Z. Sun. J. Zhou. D. Xue. J. Zhao. G. Zhai. J. Gu. and P. Zhai, 2001b. Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environ. Sci. Technol. 35: 1064-1071 https://doi.org/10.1021/es001399u
  43. Nriagu, J.O. and J.M. Pacyna, 1988. Quantitative assessment of worldwide contamination of air. Nature, 333: 134-139 https://doi.org/10.1038/333134a0
  44. Petit, D., J.P Mennessier. and L. Lambert, 1984. Stble lead isotope in pond sediments as tracers of past and present atmospheric lead pollution in Belgium. Atmos. Environ., 18: 1189-1193 https://doi.org/10.1016/0004-6981(84)90150-1
  45. Riston, P.I., B.K. Esser. S. Niemeyer. and A.R. Flegal, 1994. Lead isotopic determination of historical sources of lead to Lake Erie, North America. Geochim. Cosmochim. Acta, 58: 3297-3305 https://doi.org/10.1016/0016-7037(94)90058-2
  46. Shimamura, T., S. Iijima. M. Iwashita. M. Hattori and Y. Takaku, 2007. Lead isotopes in rainfall collected by a sequential sampler in suburban Tokyo. Atmos. Environ., 41: 3797-3805 https://doi.org/10.1016/j.atmosenv.2007.01.010
  47. Shirahata, H., R.W. Elias. and C.C. Patterson, 1980. Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalphine pond. Geochim. Cosmochim. Acta, 44: 149-162 https://doi.org/10.1016/0016-7037(80)90127-1
  48. Shotyk, W., D. Weiss. P.G. Appleby. A.K. Cheburkin. R. Frei. M. Gloor. J.D. Kramers. S. Reese. and W.O. Van Der Knaa, 1998. History of atmospheric lead deposition since 12,370 $^{14}C$ yr BP from a peat bog, Jura mountains, Switzerland. Science, 281: 1635-1640 https://doi.org/10.1126/science.281.5383.1635
  49. Todt, W., R.A. Cliff. A. Hanser. and A.W. Hofmann, 1996. Evaluation of a $^{202}Pb-^{205}Pb$ double spike for high-precision lead isotope analysis. In 'Earth Processes: Reading the Isotopic Code' ed. By Bsu, A.R. and Hart, S.R., Am. Geophy. Union p. 429-437
  50. Turekian, K.K., 1977. The fate of metals in the oceans. Geochim. Cosmochim., Acta, 41: 1139-1144 https://doi.org/10.1016/0016-7037(77)90109-0
  51. Veron, A., P. Flament. M. L. Bertho. L. Alleman. R. Flegal. and B. Hamelin, 1999. Isotopic evidence of pollutant lead sources in Northwestern France. Atmos. Environ., 33: 3377-3388 https://doi.org/10.1016/S1352-2310(98)00376-8
  52. Wang, J., P. Guo. X. Li. J. Zhu. T. Reinert. J. Heitmann. D. Spemann. J. Vogt. R. H. Flagmeyer. and J. Butz, 2000. Source Identification of lead pollution in the atmosphere of Shanghai City by analyzing single aerosol particles (SAP). Environ. Sci. Technol., 34: 1900-1905 https://doi.org/10.1021/es9907818
  53. Wang, W., X. L. Zhao. D. Guo. X. Tian. and F. Adams, 2006. Effectiveness of leaded petrol phase-out in tianjin, China based on the aerosol lead concentration and isotope abundance ratio. Sci. Total Environ., 364: 175-187 https://doi.org/10.1016/j.scitotenv.2005.07.002
  54. Zheng, J., M. Tang. Y. Shibata. A. Tanaka. Y. Li. G. Zhang. Y. Zhang. and Z. Shan, 2004. Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos. Environ., 38: 1191-1200 https://doi.org/10.1016/j.atmosenv.2003.11.004