• Title/Summary/Keyword: Spatial optimization problem

Search Result 92, Processing Time 0.026 seconds

The Effect of Rebirthing Technique on GA-based Size Optimization

  • LEE, Sang-Jin;LEE, Hyeon-Jin
    • Architectural research
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • The effect of rebirthing technique on the genetic algorithm (GA)-based size optimization is investigated. The GA mimics the principles of nature and it can gradually improve structural design through biological operations such as fitness, selection, crossover and mutation. However, premature optimum has been often detected in the generic GA with continuous design variable. Since then, the so-called rebirthing technique has been proposed to avoid this problem. However, the performance of the rebirthing technique has not been reported. Therefore, the size optimizations of spatial structures are tackled to investigate the performance of the rebirthing technique on the generic GA. From numerical results, it is well proved that the rebirthing technique is very effective to produce the optimum values regardless of the values of parameters used in the GA operations.

Optimization for Relay-Assisted Broadband Power Line Communication Systems with QoS Requirements Under Time-varying Channel Conditions

  • Wu, Xiaolin;Zhu, Bin;Wang, Yang;Rong, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4865-4886
    • /
    • 2017
  • The user experience of practical indoor power line communication (PLC) applications is greatly affected by the system quality-of-service (QoS) criteria. With a general broadcast-and-multi-access (BMA) relay scheme, in this work we investigate the joint source and relay power optimization of the amplify-and-forward (AF) relay systems used under indoor broad-band PLC environments. To achieve both time diversity and spatial diversity from the relay-involved PLC channel, which is time-varying in nature, the source node has been configured to transmit an identical message twice in the first and second signalling phase, respectively. The QoS constrained power allocation problem is not convex, which makes the global optimal solution is computationally intractable. To solve this problem, an alternating optimization (AO) method has been adopted and decomposes this problem into three convex/quasi-convex sub-problems. Simulation results show the fast convergence and short delay of the proposed algorithm under realistic relay-involved PLC channels. Compared with the two-hop and broadcast-and-forward (BF) relay systems, the proposed general relay system meets the same QoS requirement with less network power assumption.

Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme (1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석)

  • Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • This paper introduces a mesh continuation scheme for a one-dimensional inverse medium problem to reconstruct the spatial distribution of elastic wave velocities in heterogeneous semi-infinite solid domains. To formulate the inverse problem, perfectly-matched-layers(PMLs) are introduced as wave-absorbing boundaries that surround the finite computational domain truncated from the originally semi-infinite extent. To tackle the inverse problem in the PML-truncated domain, a partial-differential-equations(PDE)-constrained optimization approach is utilized, where a least-squares misfit between calculated and measured surface responses is minimized under the constraint of PML-endowed wave equations. The optimization problem iteratively solves for the unknown wave velocities with their updates calculated by Fletcher-Reeves conjugate gradient algorithms. The optimization is performed using a mesh continuation scheme through which the wave velocity profile is reconstructed in successively denser mesh conditions. Numerical results showed the robust performance of the mesh continuation scheme in reconstructing target wave velocity profile in a layered heterogeneous solid domain.

Optimization of inlet velocity profile for uniform epitaxial growth (균일한 에피층 성장을 위한 입구 유속분포 최적화)

  • Cho W. K.;Choi D. H.;Kim M.-U.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.121-126
    • /
    • 1998
  • A numerical optimization procedure is developed to find the inlet velocity profile that yields the most uniform epitaxial layer in a vertical MOCVD reactor. It involves the solution of fully elliptic equations of motion, temperature, and concentration; the finite volume method based on SIMPLE algorithm has been adopted to solve the Navier-Stokes equations. The overall optimization process is highly nonlinear and has been efficiently treated by the sequential linear programming technique that breaks the non-linear problem into a series of linear ones. The optimal profile approximated by a 6th-degree Chebyshev polynomial is very successful in reducing the spatial non-uniformity of the growth rate. The optimization is particularly effective to the high Reynolds number flow. It is also found that a properly constructed inlet velocity profile can suppress the buoyancy driven secondary flow and improve the growth-rate uniformity.

  • PDF

Spatial Scheduling for Mega-block Assembly Yard in Shipbuilding Company (조선소의 메가블록 조립작업장을 위한 공간계획알고리즘 개발)

  • Koh, Shie-Gheun;Jang, Jeong-Hee;Choi, Dae-Won;Woo, Sang-Bok
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.78-86
    • /
    • 2011
  • To mitigate space restriction and to raise productivity, some shipbuilding companies use floating-docks on the sea instead of dry-docks on the land. In that case, a floating-crane that can lift very heavy objects (up to 3,600 tons) is used to handle the blocks which are the basic units in shipbuilding processes, and so, very large blocks (these are called the mega-blocks) can be used to build a ship. But, because these mega-blocks can be made only in the area near the floating-dock and beside the sea, the space is very important resource for the process. Therefore, our problem is to make an efficient spatial schedule for the mega-block assembly yard. First of all, we formulate this situation into a mathematical model and find optimal solution for a small problem using a commercial optimization software. But, the software could not give optimal solutions for practical sized problems in a reasonable time, and so we propose a GA-based heuristic algorithm. Through a numerical experiment, finally, we show that the spatial scheduling algorithm can provide a very good performance.

GIS Oriented Platform For Solving Real World Logistic Vehicle Routing Problem

  • Md. Shahid Uz Zaman;Chen, Yen-Wei;Hayao Miyagi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1248-1251
    • /
    • 2002
  • Logistics optimization problems related with vehicle routing such as warehouse locating, track scheduling, customer order delivery, wastage pickup etc. are very interesting and important issues to date. Many Vehicle Routing and Scheduling Systems (VRSS) have been developed/proposed to optimize the logistics problems. But majority of them are dedicated to a particular problem and are unable to handle the real world spatial data directly. The system developed for one problem may not be suitable for others due to inter-problem constraint variations. The constraints may include geographical, environmental and road traffic nature of the working region along with other constraints related with the problem. So the developer always needs to modify the original routing algorithm in order to fulfill the purpose. In our study, we propose a general-purpose platform by combining GIS road map and Database Management System (DBMS), so that VRSS can interact with real world spatial data directly to solve different kinds of vehicle routing problems. Using the features of our developed system, the developer can frequently modify the existing algorithm or create a new one to serve the purpose.

  • PDF

Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure (하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

Spatial Selectivity Estimation Using Wavelet

  • Lee, Jin-Yul;Chi, Jeong-Hee;Ryu, Keun-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.459-462
    • /
    • 2003
  • Selectivity estimation of queries not only provides useful information to the query processing optimization but also may give users with a preview of processing results. In this paper, we investigate the problem of selectivity estimation in the context of a spatial dataset. Although several techniques have been proposed in the literature to estimate spatial query result sizes, most of those techniques still have some drawback in the case that a large amount of memory is required to retain accurate selectivity. To eliminate the drawback of estimation techniques in previous works, we propose a new method called MW Histogram. Our method is based on two techniques: (a) MinSkew partitioning algorithm that processes skewed spatial datasets efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. With the experimental result, we prove that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.

  • PDF

Optimum Thickness Distributions of Plate Structure with Different Essential Boundary Conditions in the Fundamental Frequency Maximization Problem (기본고유진동수 최대화 문제에 있어서 경계조건에 따른 판구조물의 최적두께 분포)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.227-232
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

A Metadata-enabled Approach for Scalable Video Streaming in Heterogeneous Networks

  • Thang, Truong Cong;Le, Hung T.;Nguyen, Duc V.;Pham, Anh T.
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.153-162
    • /
    • 2015
  • In today's pervasive computing environments, multimedia content should be adapted to meet various conditions of network connections, terminals, and user characteristics. Scalable Video Coding (SVC) is a key solution for video communication over heterogeneous networks, where user terminals have different capabilities. This paper presents a standard-compliant approach that adapts an SVC bitstream to support multiple users. The adaptation problem is formulated as an optimization problem, focusing on the tradeoff between qualities of different spatial layers of an SVC video. Then the adaptation process is represented by standard metadata of MPEG-21, which can be solved by universal processing to enable interoperable and automatic operation. Our approach provides the users with optimal quality, a wide flexibility, and seamless adaptation. To the best of our knowledge, this is the first study that shows the adaptation tradeoff between spatial layers of a conforming SVC bitstream.