• Title/Summary/Keyword: Spatial linear model

Search Result 282, Processing Time 0.024 seconds

Displacement Response Analysis of Twisted Irregular Buildings According to TMD (TMD 적용에 따른 Twisted 비정형 건축물의 변위 응답 분석)

  • Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2024
  • In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.

A Study on the Possibility of Model Development from Traditional Han-ok to Urban Clustering Housing Model in Korean Context (전통한옥의 도시집합주거로 발전 가능성 연구)

  • Shon, Seung-Kwang
    • Journal of the Korean housing association
    • /
    • v.19 no.3
    • /
    • pp.71-81
    • /
    • 2008
  • A traditional Korean housing is a typical type which is contained life style, spatial organization and scape element of people who lived in Korea. In the hanok, people want to be live not only in human environment and traditional culture, but also modem urban housing as a high density. This article deals as follows: First, Hanok as urban housing would be composed in a housing lot, linear type layout, devide building, and cluster type. Second, Housing unit and configuration of Multi family housing can be used single story, second story, second story + single story, multi story and Hanok roofing. Thirds, structure of the building are traditional wooden, combined one of steel and wood or concrete and wood, and the building system in exterior and interior can be seperated into another system. Forth, Image of multi story Hanok A last, consistency of Hanok is not a repeat of an origin but application and creative aptitude of the origin, and multi family housing application of Hanok can be a trial creative.

Helical gear multi-contact tooth mesh load analysis with flexible bearings and shafts

  • Li, Chengwu;He, Yulin;Ning, Xianxiong
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.839-856
    • /
    • 2015
  • A multi-contact tooth meshing model for helical gear pairs considering bearing and shaft deformations is proposed. First, to easily incorporate into the system model, the complicated Harris' bearing force-displacement relationship is simplified applying a linear least square curve fit. Then, effects of shaft and bearing flexibilities on the helical gear meshing behavior are implemented through transformation matrices which contain the helical gear orientation and spatial displacement under loads. Finally, true contact lines between conjugated teeth are approximated applying a modified meshing equation that includes the influence of tooth flank displacement on the tooth contact induced by shaft and bearing displacements. Based on the model, the bearing's force-displacement relation is examined, and the effects of shaft deformation and external load on the multi-contact tooth mesh load distribution are also analyzed. The advantage of this work is, unlike previous works to search true contact lines through time-consuming iterative strategy, to determine true contact lines between conjugated teeth directly with presentation of deformations of bearings and shafts.

Study of the Tidal Channels Appeared on SAR Images

  • Kim, Tae-Rim;Park, Jong-Jib;Choi, Byoung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.501-505
    • /
    • 2009
  • Quasi-linear bright features persistently appeared on ENVISAT ASAR images as well as X-SAR images along the tidal channels in Gyung-Gi Bay, Korea during the ebb tides. These features are induced by spatial backscatter variations caused by surface convergence (divergence) through the interaction between tidal currents and bathymetry. In order to validate this mechanism, a numerical tidal model simulation is performed on the realistic bathymetry with the tidal boundary conditions. The tide model reproduces the current convergence zone along the tidal channel during the ebb tides, which exactly coincides with the location of bright line features on SAR images.

A study on the spatial mismatch by income and regional characteristics (지역 특성에 따른 소득별 직주불일치에 관한 연구)

  • Lee, Minju;Park, In Kwon
    • Journal of the Korean Regional Science Association
    • /
    • v.32 no.1
    • /
    • pp.67-82
    • /
    • 2016
  • This study aims to test the spatial mismatch hypothesis by exploring the relationship between income and commuting time in Seoul, Korea. For this purpose, we analyze the commuting times of individuals who commute to Seoul, using the data for the metropolitan household survey. We employed a hierarchial linear model(HLM) to capture the effects of both individual attributes and regional attributes, and their interactions. The results show that the commuting time decreases with household income controlling for the regional attributes, and the effect of income increases with the housing price of the location of a commuter's firm. This implies that the spatial mismatch holds for Seoul as follows: Lower personal income and housing affordablility extend individuals' commuting times, and the destinations' characteristics such as housing type and land use also have impacts on commuting time. These results have some policy implications for achieving social equity in terms of spatial structure of the city.

Estimating Leaf Area Index of Paddy Rice from RapidEye Imagery to Assess Evapotranspiration in Korean Paddy Fields

  • Na, Sang-Il;Hong, Suk Young;Kim, Yi-Hyun;Lee, Kyoung-Do;Jang, So-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • Leaf area index (LAI) is important in explaining the ability of crops to intercept solar energy for biomass production, amount of plant transpiration, and in understanding the impact of crop management practices on crop growth. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of RapidEye imagery obtained from 2010 to 2012 using empirical models in a rice plain in Seosan, Chungcheongnam-do. Rice plants were sampled every two weeks to investigate LAI, fresh and dry biomass from late May to early October. RapidEye images were taken from June to September every year and corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). Linear, exponential, and expolinear models were developed to relate temporal satellite NDVIs to measured LAI. The expolinear model provided more accurate results to predict LAI than linear or exponential models based on root mean square error. The LAI distribution was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when RapidEye imagery was applied to expolinear model. The spatial trend of LAI corresponded with the variation in the vegetation growth condition.

Numerical Evaluation of Fundamental Finite Element Models in Bar and Beam Structures (Bar와 Beam 구조물의 기본적인 유한요소 모델의 수치해석)

  • Ryu, Yong-Hee;Ju, Bu-Seog;Jung, Woo-Young;Limkatanyu, Suchart
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case, the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST and Q4 elements had to be improved by the mesh refinement.

The Assessment of Future Flood Vulnerability for Seoul Region (서울 지역의 미래 홍수취약도 평가)

  • Sung, Jang Hyun;Baek, Hee-Jeong;Kang, Hyun-Suk;Kim, Young-Oh
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.341-352
    • /
    • 2012
  • The purpose of this study is to statistically project future probable rainfall and to quantitatively assess a future flood vulnerability using flood vulnerability model. To project probable rainfall under non-stationarity conditions, the parameters of General Extreme Value (GEV) distribution were estimated using the 1 yr data added to the initial 30 yr base series. We can also fit a linear regression model between time and location parameters after comparing the linear relationships between time and location, scale, and shape parameters, the probable rainfall in 2030 yr was calculated using the location parameters obtained from linear regression equation. The flood vulnerability in 2030 yr was assessed inputted the probable rainfall into flood vulnerability assessment model suggested by Jang and Kim (2009). As the result of analysis, when a 100 yr rainfall frequency occurs in 2030 yr, it was projected that vulnerability will be increased by spatial average 5 % relative to present.

Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area (Sentienl-1 SAR 토양수분 산정 연구: 농지와 초지지역을 중심으로)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.973-983
    • /
    • 2020
  • Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there're still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.

Video De-noising Using Adaptive Temporal and Spatial Filter Based on Mean Square Error Estimation (MSE 추정에 기반한 적응적인 시간적 공간적 비디오 디노이징 필터)

  • Jin, Changshou;Kim, Jongho;Choe, Yoonsik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1048-1060
    • /
    • 2012
  • In this paper, an adaptive temporal and spatial filter (ATSF) based on mean square error (MSE) estimation is proposed. ATSF is a block based de-noising algorithm. Each noisy block is selectively filtered by a temporal filter or a spatial filter. Multi-hypothesis motion compensated filter (MHMCF) and bilateral filter are chosen as the temporal filter and the spatial filter, respectively. Although there is no original video, we mathematically derivate a formular to estimate the real MSE between a block de-noised by MHMCF and its original block and a linear model is proposed to estimate the real MSE between a block de-noised by bilateral filter and its original block. Finally, each noisy block is processed by the filter with a smaller estimated MSE. Simulation results show that our proposed algorithm achieves substantial improvements in terms of both visual quality and PSNR as compared with the conventional de-noising algorithms.