• Title/Summary/Keyword: Spatial imagery

Search Result 598, Processing Time 0.024 seconds

The analysis of drought susceptibility using soil moisture information and spatial factors involved in satellite imagery (위성영상의 토양수분 정보와 공간적 요인을 고려한 가뭄 민감도 분석)

  • 박은주;황철수;성정창
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.481-492
    • /
    • 2002
  • The severity and spatial Patterns of spring drought on the croplands arc investigated using satellite imagery(Landsat ETM+). It is necessary to analyze the area droughty conditions in order to decrease the damage and make the efficient policies. In this context, the information about soil moisture levels, which were fatal factors to the crop growth, was acquired from wetness calculated from Tasseled cap transformation. We confirmed that the wetness values have a strong correlation with NDVI and the principal components. The result showed that the intensity of vegetation covering the surface could be understood as the index of the impacts of drought on croplands and these relationships were effective to classify dry areas in satellite imagery.

  • PDF

Heavy Snowfall Disaster Response using Multiple Satellite Imagery Information (다중 위성정보를 활용한 폭설재난 대응)

  • Kim, Seong Sam;Choi, Jae Won;Goo, Sin Hoi;Park, Young Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.135-143
    • /
    • 2012
  • Remote sensing which observes repeatedly the whole Earth and GIS-based decision-making technology have been utilized widely in disaster management such as early warning monitoring, damage investigation, emergent rescue and response, rapid recovery etc. In addition, various countermeasures of national level to collect timely satellite imagery in emergency have been considered through the operation of a satellite with onboard multiple sensors as well as the practical joint use of satellite imagery by collaboration with space agencies of the world. In order to respond heavy snowfall disaster occurred on the east coast of the Korean Peninsula in February 2011, snow-covered regions were analyzed and detected in this study through NDSI(Normalized Difference Snow Index) considering reflectance of wavelength for MODIS sensor and change detection algorithm using satellite imagery collected from International Charter. We present the application case of National Disaster Management Institute(NDMI) which supported timely decision-making through GIS spatial analysis with various spatial data and snow cover map.

Improving Urban Vegetation Classification by Including Height Information Derived from High-Spatial Resolution Stereo Imagery

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.383-392
    • /
    • 2005
  • Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.

The Removal of Spatial Inconsistency between SLI and 2D Map for Conflation (SLI(Street-level Imagery)와 2D 지도간의 합성을 위한 위치 편차 제거)

  • Ga, Chill-O;Lee, Jeung-Ho;Yang, Sung-Chul;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2012
  • Recently, web portals have been offering georeferenced SLI(Street-Level Imagery) services, such as Google Streetview. The SLI has a distinctive strength over aerial images or vector maps because it gives us the same view as we see the real world on the street. Based on the characteristic, applicability of the SLI can be increased substantially through conflation with other spatial datasets. However, spatial inconsistency between different datasets is the main reason to decrease the quality of conflation when conflating them. Therefore, this research aims to remove the spatial inconsistency to conflate an SLI with a widely used 2D vector map. The removal of the spatial inconsistency is conducted through three sub-processes of (1) road intersection matching between the SLI trace and the road layer of the vector map for detecting CPPs(Control Point Pairs), (2) inaccurate CPPs filtering by analyzing the trend of the CPPs, and (3) local alignment using accurate CPPs. In addition, we propose an evaluation method suitable for conflation result including an SLI, and verify the effect of the removal of the spatial inconsistency.

3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.409-412
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Recognizing this potential use of high resolution satellite imagery, KARI is performing a project for developing Korea multipurpose satellite 3(KOMPSAT-3). Therefore, it is necessary to develop techniques for various GIS applications of KOMPSAT-3, using similar high resolution satellite imagery. As fundamental studies for this purpose, we focused on the extraction of 3D spatial information and the update of existing GIS data from QuickBird imagery. This paper examines the scheme for rectification of high resolution image, and suggests the convenient semi-automatic algorithm for extraction of 3D building information from a single image. The algorithm is based on triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and enhance the digitizing accuracy and the computation efficiency.

  • PDF

Developing Metadata for Imagery and Gridded Data

  • Song, Yong-Cheol;Shin, Sang-Min;Kim, Kye-Hyun;Han, Eun-Young
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1140-1142
    • /
    • 2003
  • Imagery and gridded data can be used as the sources of extracting important information and data layers in utilizing GIS. The existing metadata standard to distribute and to utilize the geographic information are mainly concentrated at the vector data and do not provide metadata components for imagery and gridded data. In this study, metadata components for imagery and gridded data have been investigated. Firstly, existing international metadata standards such as ISO and domestic standards of TTA have been analyzed. Based on th results, the draft metadata for imagery and gridded data have been proposed as the extensions of domestic metadata standard distribution. The draft metadata could contribute to build the basic standards to access and utilize proper imagery and gridded data fit to various application field, and this will be fundamental bases for activating GIS in public and private sectors.

  • PDF

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Automatic Validation of the Geometric Quality of Crowdsourcing Drone Imagery (크라우드소싱 드론 영상의 기하학적 품질 자동 검증)

  • Dongho Lee ;Kyoungah Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.577-587
    • /
    • 2023
  • The utilization of crowdsourced spatial data has been actively researched; however, issues stemming from the uncertainty of data quality have been raised. In particular, when low-quality data is mixed into drone imagery datasets, it can degrade the quality of spatial information output. In order to address these problems, the study presents a methodology for automatically validating the geometric quality of crowdsourced imagery. Key quality factors such as spatial resolution, resolution variation, matching point reprojection error, and bundle adjustment results are utilized. To classify imagery suitable for spatial information generation, training and validation datasets are constructed, and machine learning is conducted using a radial basis function (RBF)-based support vector machine (SVM) model. The trained SVM model achieved a classification accuracy of 99.1%. To evaluate the effectiveness of the quality validation model, imagery sets before and after applying the model to drone imagery not used in training and validation are compared by generating orthoimages. The results confirm that the application of the quality validation model reduces various distortions that can be included in orthoimages and enhances object identifiability. The proposed quality validation methodology is expected to increase the utility of crowdsourced data in spatial information generation by automatically selecting high-quality data from the multitude of crowdsourced data with varying qualities.