• Title/Summary/Keyword: Spatial distribution of rainfall

Search Result 206, Processing Time 0.032 seconds

Evaluation of Raingauge Density and Spatial Distribution: A Case Study for Nam Han River Basin (우량계의 밀도 및 공간분포 검토: 남한강 유역을 중심으로)

  • Yoo, Chul-Sang;Kim, In-Bae;Ryoo, So-Ra
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.173-181
    • /
    • 2003
  • This study has evaluated the raingauge network of Nam-Han River Basin by assuming that the rainfall field is homogeneous in space and its spatial correlation structure is exponential. The results of the study was compared with the standard of WMO. Summarizing the results are as follows: (1) The Nam-Han River Basin is not the mountain area, nor the plain area of the WMO standard. However, the correlation length of the downstream part is longer than that of the upstream part, enough to differentiate the rainfall fields in both areas. (2) It seems that the standard for the evaluation of the raingauge network of Nam-Han River Basin should be decided to represent upper 50% of correlations derived, when the maximum intervals between neighboring gauges are estimated to be 18.2km for the upstream area and 21.1km for the downstream area. Simply evaluating the raingauge density, the Nam-Han River Basin has enough raingauges exceeding the WMO standard for the mountain area in the temperate region. (3) Evaluation of the spatial distribution of raingauges in the Nam-Han River Basin shows that its spatial distribution Is not in a proper level, especially when applying the WMO standard for the mountain area in the temperate region. However, when applying the new standard proposed in this study, only five to six more raingauges are required to be added.

The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea (경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성)

  • 박종길;이부용
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

The Assessment of Future Flood Vulnerability for Seoul Region (서울 지역의 미래 홍수취약도 평가)

  • Sung, Jang Hyun;Baek, Hee-Jeong;Kang, Hyun-Suk;Kim, Young-Oh
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.341-352
    • /
    • 2012
  • The purpose of this study is to statistically project future probable rainfall and to quantitatively assess a future flood vulnerability using flood vulnerability model. To project probable rainfall under non-stationarity conditions, the parameters of General Extreme Value (GEV) distribution were estimated using the 1 yr data added to the initial 30 yr base series. We can also fit a linear regression model between time and location parameters after comparing the linear relationships between time and location, scale, and shape parameters, the probable rainfall in 2030 yr was calculated using the location parameters obtained from linear regression equation. The flood vulnerability in 2030 yr was assessed inputted the probable rainfall into flood vulnerability assessment model suggested by Jang and Kim (2009). As the result of analysis, when a 100 yr rainfall frequency occurs in 2030 yr, it was projected that vulnerability will be increased by spatial average 5 % relative to present.

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function (근사적 우도함수를 이용한 Neyman-Scott 구형펄스모형의 공간구조 분석)

  • Lee, Jeongjin;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulses Model (NSRPM) is mainly used to construct hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena, such as the arrival of storms or rain cells. In NSRPM, the method of moments has often been used because it is difficult to know the distribution of rainfall intensity. Recently, approximated likelihood function for NSRPM has been introduced. In this paper, we propose a hierarchical model for applying a spatial structure to the NSRPM parameters using the approximated likelihood function. The proposed method is applied to summer hourly precipitation data observed at 59 weather stations (Korea Meteorological Administration) from 1973 to 2011.

Establishment and Operation of a Soil Moisture Monitoring System Considering Temporal and Spatial Features of Representation (시공간 대표성을 고려한 토양수분 모니터링 System의 구축 및 운영)

  • Kim, Ki-Hoon;Kim, Sang-Hyun;Kim, Hyung-Sub;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.73-82
    • /
    • 2005
  • A soil moisture measuring method of a hillslope for Korean watershed is developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a digital elevation model(DEM). Flow distribution algorithms were applied and a distribution pattern of the measurement sensors was determined to maximize representative features of spatial variation of soil moisture. Inverse surveying provides appropriate information to install the waveguides in the field. Measurements were performed at the right side hillslope of Bumrunsa located at the Sulmachun watershed. A multiplex monitoring system has been established and spatial-temporal variation of soil moisture data has been measured for a rainfall-runoff event. Acquired soil moisture data show that physical hydrologic interpretations as well as the effectiveness of monitoring system. Lack of connectivity in vertical distribution of soil moisture suggests that preferential flow and macropore flux are important components in the hillslope hydrology.

Comparative Analysis of Parameter Estimation Methods in Estimation of Spatial Distribution of Probability Rainfall (확률강우량의 공간분포추정에 있어서 매개변수 추정기법의 비교분석)

  • Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.413-413
    • /
    • 2011
  • 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 따라서 본 연구에서는 계층구조로 구성된 가우시안 공간선형혼합모델을 적용하여 확률강우량의 공간분포를 추정함에 있어서 모델 매개변수에 대한 추정기법을 비교하였으며, 매개변수 추정기법으로서 경험베리오그램에 대한 곡선적합기법인 보통최소제곱법 및 가중최소제곱법, 우도함수를 기반으로 하는 최우도법 및 REML과 같은 기존의 매개변수 추정기법들과 최근 공간통계학 분야에서 적용이 증가하고 있는 Bayesian 기법을 비교하였다. 이로부터 매개변수 추정기법 간의 매개변수 추정치에 대한 정량적 비교결과를 제시하였으며, Bayesian 기법의 적용을 통해 매개변수에 대한 불확실성 추정결과를 제시하였다. 이러한 결과들은 확률강우량의 공간분포 추정에 있어서 공간예측모델의 매개변수 추정 및 예측에 대한 신뢰성을 향상시킬 수 있는 기초자료로 활용될 수 있을 것이다.

  • PDF

Application of Equivalent Ellipses for the Qualification of the Spatial Scale of Rainfall Event (호우사상의 공간규모 정량화를 위한 등가타원의 적용)

  • Kim, Ha-Young;Park, Chang-Yeol;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • This study examined the quantification problem of a storm shape using the concept of equivalent ellipses. The equivalent ellipses of a storm event were estimated at every time step with respect to the several thresholds of rainfall intensity, which was also examined in terms of their size and number. In addition, the average equivalent ellipse was decided, and the confidence intervals of major axis, minor axis, and rotational angle were calculated to evaluate if the average equivalent ellipse could be the representative one. As results, the following results could be derived. First of all, the number of equivalent ellipses and the size of equivalent ellipses increase as the threshold increase. Secondly, the appropriate ratio of major and minor axises of equivalent ellipse is 2 : 1. Finally, the average rotational angle estimated with respect to several threshold rainfall intensities were all found not to be statistically different from that of all representative rotational angles.

Design of FPGA-based Signal Processing of EWRG for Localized Heavy Rainfall Observation (국지성 호우 관측을 위한 FPGA 기반의 전파강수계 신호처리 설계)

  • Choi, Jeong-Ho;Lee, Bae-Kyu;Park, Hyeong-Sam;Park, Jeong-Min;Lim, Sang-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1215-1223
    • /
    • 2020
  • Recently, the number of natural disasters caused by inclement weather conditions such as localized heavy rainfall, Typhoon, etc. is increasing in Korea, which requires relevant prevention and water management measures. Rain gauges installed on the ground have strengths in continuously·directly measures ground precipitation but cannot provide accurate information on spatial precipitation distribution in the areas without the rain gauges. The present research has designed and developed an electromagnetic-based multi-purpose precipitation gauge(EWRG, Electromagnetic Wave Rain Gauge) that can measure rainfall at the real time, by overcoming spatial representativeness. In this paper, we propose an FPGA-based signal processing design method for EWRG. The signal processing of the EWRG was largely designed by calculating the ADC and DDC of the LFM waveform, pulse compression, correlation coefficient and estimating the precipitation parameter. In this study, the LFM waveform and pulse compressed signal were theoretically analyzed.