DOI QR코드

DOI QR Code

Application of Equivalent Ellipses for the Qualification of the Spatial Scale of Rainfall Event

호우사상의 공간규모 정량화를 위한 등가타원의 적용

  • Kim, Ha-Young (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Park, Chang-Yeol (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Yoo, Chul-Sang (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University)
  • 김하영 (고려대학교 공과대학 건축사회환경공학과) ;
  • 박창열 (고려대학교 공과대학 건축사회환경공학과) ;
  • 유철상 (고려대학교 공과대학 건축사회환경공학과)
  • Received : 2010.04.19
  • Accepted : 2011.04.15
  • Published : 2011.04.30

Abstract

This study examined the quantification problem of a storm shape using the concept of equivalent ellipses. The equivalent ellipses of a storm event were estimated at every time step with respect to the several thresholds of rainfall intensity, which was also examined in terms of their size and number. In addition, the average equivalent ellipse was decided, and the confidence intervals of major axis, minor axis, and rotational angle were calculated to evaluate if the average equivalent ellipse could be the representative one. As results, the following results could be derived. First of all, the number of equivalent ellipses and the size of equivalent ellipses increase as the threshold increase. Secondly, the appropriate ratio of major and minor axises of equivalent ellipse is 2 : 1. Finally, the average rotational angle estimated with respect to several threshold rainfall intensities were all found not to be statistically different from that of all representative rotational angles.

본 연구에서는 등가타원을 이용하여 호우사상의 공간분포를 정량화 하는 문제를 살펴보았다. 주어진 호우사상의 등가 타원을 매 시간별 한계강우강도에 따라 추정하고, 이 등가타원의 개수와 규모의 변화를 살펴보았다. 또한 한계강우강도 별로 평균 등가타원을 결정하고, 이 평균 등가타원이 주어진 호우사상을 대표할 수 있는지 판단하기 위해 평균 등가타원의 장축과 단축, 그리고 회전각에 대한 신뢰구간을 산정하여 평가하였다. 연구결과, 한계강우강도가 커짐에 따라 등가타원의 개수와 크기는 감소하고 등가타원이 나타나는 시간도 늦어지는 것을 확인하였다. 또한 등가타원의 장축과 단축의 비는 2 : 1이 적절한 것으로 나타났으며, 한계강우강도별로 추정된 등가타원의 평균 회전각은 모든 등가타원의평균 회전각과 통계학적으로 유사함을 확인하였다.

Keywords

References

  1. 김규호, 박성식, 박재현 (2001). “설계강우를 위한 면적우량 환산계수 산정.” 대한토목학회논문집, 대한토목학회, 제21권, 제4-B호, pp. 381-391.
  2. 김남원, 원유승, 이정은 (2005). “호우중심형 면적우량 감소계수.” 대한토목학회 학술발표회 논문집, 대한토목학회, pp. 1502-1505.
  3. 김원, 윤강훈 (1992). “면적우량환산계수의 산정과 그 지역적 변화.” 한국수문학회지, 한국수문학회, 제25권, 제3호, pp. 79-86.
  4. 건설교통부(2007). 홍수량 산정기법 가이드라인 보고서.
  5. 국토해양부 (2008a). 한강유역종합치수계획 요약보고서.
  6. 국토해양부 (2008b). 치수정책 수립을 위한 강우-유출 모형의 적용성 분석 연구.
  7. 김재한(2005). 수문계의수학적모형-선형계를중심으로-, 새론.
  8. 오경두(2009). “미래지향적인 소하천 치수계획을 위한 소고.” 한국수자원학회지, 한국수자원학회, 제42권, 제5호, pp. 23-37.
  9. 유철상, 김경준 (2004). “혼합분포를 이용한 면적감소계수의산정.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제9호, pp. 759-769.
  10. 유철상, 박창열 (2010). “호우사상의 대표 이동방향 결정.” 한국방재학회논문집, 제10권, 제2호, pp. 99-102.
  11. 윤용남 (2007). 수문학-기초와 응용. 청문각.
  12. 윤용남, 강성규, 장수형 (2004). “유역의 시 공간적 분포특성을고려한 면적감소계수산정.” 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 1112-1116.
  13. 정종호, 윤용남 (2003). 수자원설계실무. 구미서관.
  14. 정종호, 나창진, 윤용남 (2002). “한강유역이 면적감소계수 산정.” 한국수자원학회논문집, 한국수자원학회, 제35권, 제2호, pp. 173-186.
  15. 한국수자원학회(2008). PMP 및 PMF 산정절차 지침수립.
  16. Daydyuk, V., Bunton, J.D., and Guo, Y.J. (2009). “Study on high rate long range wireless communications in the 71-76 and 81-86 GHZ bands.” Proceedings of the 39th European Microwave Conference, Italy, pp. 1315-1318.
  17. Doswell, C.A. (1993). “Flash flood-producing convective storms: Current understandings and research.” Joint workshop on Natural Hazards, Barcelona, Spain, pp. 8-11.
  18. Eagleson, P.S. (1970). Dynamic Hydrology, McGraw Hill.
  19. Feral, L., Mesnard, F., Sauvageor, H., Castanet, L., and Lemorton, J. (2000). “Rain cells shape and orientation distribution in south-west of france.” Physics and Chemistry of the Earth part B. Vol. 25, No. 10-12, pp. 1073-1078. https://doi.org/10.1016/S1464-1909(00)00155-6
  20. Foufoula-Georgiou, E. (1989). “A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths.” Water Resources Research, Vol. 25, No. 5, pp. 799-815. https://doi.org/10.1029/WR025i005p00799
  21. Goldhirsh, J., and Musiani, B. (1986). “Rain cell size statistics derived from radar observations at Wallops Island, Virginia.” IEEE Transactions on Geoscience and Remote Sensing, Vol. GE24, No. 6, pp. 947-954.
  22. Hansen, E.M., Schreiner, L.C., and Miller, J.F. (1982). “Application of probable maximum precipitation estimates-United States East of the 105th Meridian” Hydrometeorological Report, No. 52, National Weather Service, Washington, DC, pp. 1-168.
  23. Hershfield, D.M. (1984). “Extreme rainfall intensities.” Archives for Meteorology, Geophysics, and Bioclimatology, Vol. 35, No. 1-2, pp. 67-80. https://doi.org/10.1007/BF02269410
  24. Huff, F.A. (1967). “Time distribution of rainfall in heavy storms.” Water Resources Research, Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  25. Jensen, N.E., and Pedersen, L. (2005). “Spatial variability of rainfall: Variations withins a single radar pixel.” Atmospheric Research, Vol. 77, pp. 269-277. https://doi.org/10.1016/j.atmosres.2004.10.029
  26. John, F.E.J., Mark, L.V., and Pierre, Y.J. (2007). “Two-dimensional simulations of extreme floods on a large watershed.” Journal of Hydrology, Vol. 347, pp. 229-241. https://doi.org/10.1016/j.jhydrol.2007.09.034
  27. Kamran, H.S., David, C.G., Donald, E.M., and Soroosh, S. (2003). “Spatial characteristics of thunderstorm rainfall field and their relation to runoff.” Journal of Hydrology, Vol. 271, pp. 1-21. https://doi.org/10.1016/S0022-1694(02)00311-6
  28. Lascelles, B., Favis-mortlock, D.T., Parsons, A.J., and Guerra, A.J.T. (2000). “Spatial and temporal variation in two rainfall simulators: Implications for spatially explicit rainfall simulation experiments.” Earth Surface Processes and Landforms, Vol. 25, pp. 709-721. https://doi.org/10.1002/1096-9837(200007)25:7<709::AID-ESP126>3.0.CO;2-K
  29. Moussa, R. (2003). “On morphometric properties of basins, scale effects and hydrological response.” Hydrological Processes, Vol. 17, pp. 33-58. https://doi.org/10.1002/hyp.1114
  30. Pvodanovic, P., Cunderlik, J., and Simonovic, S.P. (2005). “Synthetic storm model for climate change impact modeling.” 17th Canadian Hydrotechnical Conference, pp. 39-46.
  31. Suyanto, A., O'Connell, P.E., and Metcalfe, A.V. (1995). “The influence of storm characteristics and catchment conditions on extreme flood response : A case study based on the brue river basin, U.K.” Surveys in Geophysics, Vol. 16, No. 2, pp. 201-225. https://doi.org/10.1007/BF00665780
  32. Walpole, R.E., Myers, R.H., Myers, S.L., and Ye K. (2007). Probability & Statistics for Engineers & Scientists. Pearson Education.
  33. Watts, L.G., and Calver, A. (1991). “Effects of spatially-distributed rainfall on runoff for a conceptual catchment.” Nordic Hydrology, Vol. 22, No. 1, pp. 1-14.
  34. Wilson, L.L., and Foufoula-Georgiou, E. (1990). “Regional rainfall frequency analysis via stochastic storm transportation.” Journal of Hydraulic Engineering, Vol. 116, No. 7, pp. 859-880. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:7(859)

Cited by

  1. Bias from Rainfall Spatial Distribution in the Application of Areal Reduction Factor vol.22, pp.12, 2018, https://doi.org/10.1007/s12205-017-1773-5