• Title/Summary/Keyword: Spatial Statistics Method

Search Result 219, Processing Time 0.022 seconds

A Trimmed Spatial Median Estimator Using Bootstrap Method (붓스트랩을 활용한 최적 절사공간중위수 추정량)

  • Lee, Dong-Hee;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.375-382
    • /
    • 2010
  • In this study, we propose a robust estimator of the multivariate location parameter by means of the spatial median based on data trimming which extending trimmed mean in the univariate setup. The trimming quantity of this estimator is determined by the bootstrap method, and its covariance matrix is estimated by using the double bootstrap method. This extends the work of Jhun et al. (1993) to the multivariate case. Monte Carlo study shows that the proposed trimmed spatial median estimator yields better efficiency than a spatial median, while its covariance matrix based on double bootstrap overcomes the under-estimating problem occurred on single bootstrap method.

Optimizing the maximum reported cluster size for normal-based spatial scan statistics

  • Yoo, Haerin;Jung, Inkyung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.373-383
    • /
    • 2018
  • The spatial scan statistic is a widely used method to detect spatial clusters. The method imposes a large number of scanning windows with pre-defined shapes and varying sizes on the entire study region. The likelihood ratio test statistic comparing inside versus outside each window is then calculated and the window with the maximum value of test statistic becomes the most likely cluster. The results of cluster detection respond sensitively to the shape and the maximum size of scanning windows. The shape of scanning window has been extensively studied; however, there has been relatively little attention on the maximum scanning window size (MSWS) or maximum reported cluster size (MRCS). The Gini coefficient has recently been proposed by Han et al. (International Journal of Health Geographics, 15, 27, 2016) as a powerful tool to determine the optimal value of MRCS for the Poisson-based spatial scan statistic. In this paper, we apply the Gini coefficient to normal-based spatial scan statistics. Through a simulation study, we evaluate the performance of the proposed method. We illustrate the method using a real data example of female colorectal cancer incidence rates in South Korea for the year 2009.

Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.777-788
    • /
    • 2021
  • Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

Onion yield estimation using spatial panel regression model (공간 패널 회귀모형을 이용한 양파 생산량 추정)

  • Choi, Sungchun;Baek, Jangsun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.873-885
    • /
    • 2016
  • Onions are grown in a few specific regions of Korea that depend on the climate and the regional characteristic of the production area. Therefore, when onion yields are to be estimated, it is reasonable to use a statistical model in which both the climate and the region are considered simultaneously. In this paper, using a spatial panel regression model, we predicted onion yields with the different weather conditions of the regions. We used the spatial auto regressive (SAR) model that reflects the spatial lag, and panel data of several climate variables for 13 main onion production areas from 2006 to 2015. The spatial weight matrix was considered for the model by the threshold value method and the nearest neighbor method, respectively. Autocorrelation was detected to be significant for the best fitted model using the nearest neighbor method. The random effects model was chosen by the Hausman test, and the significant climate variables of the model were the cumulative duration time of sunshine (January), the average relative humidity (April), the average minimum temperature (June), and the cumulative precipitation (November).

Bayes Inference for the Spatial Time Series Model (공간시계열모형에 대한 베이즈 추론)

  • Lee, Sung-Duck;Kim, In-Kyu;Kim, Duk-Ki;Chung, Ae-Ran
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2009
  • Spatial time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations. In this paper, We estimate the parameters of spatial time autoregressive moving average (SIARMA) process by method of Gibbs sampling. Finally, We apply this method to a set of U.S. Mumps data over a 12 states region.

A Spatial Statistical Approach to Residential Differentiation (I): Developing a Spatial Separation Measure (거주지 분화에 대한 공간통계학적 접근 (I): 공간 분리성 측도의 개발)

  • Lee, Sang-Il
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.616-631
    • /
    • 2007
  • Residential differentiation is an academic theme which has been given enormous attention in urban studies. This is due to the fact that residential segregation can be seen as one of the best indicators for socio-spatial dialectics occurring on urban space. Measuring how one population group is differentiated from the other group in terms of residential space has been a focal point in the residential segregation studies. The index of dissimilarity has been the most extensively used one. Despite its popularity, however, it has been accused of inability to capture the degree of spatial clustering that unevenly distributed population groups usually display. Further, the spatial indices of segregation which have been introduced to edify the problems of the index of dissimilarity also have some drawbacks: significance testing methods have never been provided; recent advances in spatial statistics have not been extensively exploited. Thus, the main purpose of the research is to devise a spatial separation measure which is expected to gauge not only how unevenly two population groups are distributed over urban space, but also how much the uneven distributions are spatially clustered (spatial dependence). The main results are as follows. First, a new measure is developed by integrating spatial association measures and spatial chi-square statistics. A significance testing method based on the generalized randomization test is also provided. Second, a case study of residential differentiation among groups by educational attainment in major Korean metropolitan cities clearly shows the applicability of the analytical framework presented in the paper.

Geovisualization of Migration Statistics Using Flow Mapping Based on Web GIS (Web GIS 기반 유선도 작성을 통한 인구이동통계의 지리적 시각화)

  • Kim, Kam-Young;Lee, Sang-Il
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.268-281
    • /
    • 2012
  • In spite of the usefulness of migration statistics in spatially understanding social processes and identifying social effects of spatial processes, services and analyses of the statistics have been restricted due to the complexity of their data structure. In addition, flow mapping functionality which is a useful method to explore and visualize the migration statistics has yet to be fully represented in modern GIS applications. Given this, the purpose of this research is to demonstrate the possibility of flow mapping and the exploratory spatial analysis of the migration statistics in a Web GIS environment. For this, the characteristics of the statistics were examined from database, GIS, and cartographic perspectives. Then, O-D structure of the migration statistics was converted to spatial data appropriate to f low mapping based on the characteristics. The interface of Web GIS is specialized the migration statistics and provides exploratory visualization by allowing dynamic interactions such as spatial focusing and attribute filtering.

  • PDF

A Small Area Estimation for Monthly Wage Using Mean Squared Percentage Error (MSPE를 이용한 임금총액 소지역 추정)

  • Hwang, Hee-Jin;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.403-414
    • /
    • 2009
  • Many researches have been devoted to the small area estimation related with the area level statistics. Almost all of the small area estimation methods are derived based on minimization of mean squared error(MSE). Recently Hwang and Shin (2008) suggested an alternative small area estimation method by minimizing mean squared percentage error. In this paper we apply this small area estimation method to the labor statistics, especially monthly wages by a branch area of labor department. The Monthly Labor Survey data (2007) is used for analysis and comparison of these methods.

Estimation of Spatial Dependence by Quasi-likelihood Method (의사우도법을 이용한 공간 종속 모형의 추정)

  • 이윤동;최혜미
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.519-533
    • /
    • 2004
  • In this paper, we suggest quasi-likelihood estimation (QLE) method and its robust version in estimating spatial dependence modelled through variogram used for spatial data modelling. We compare the statistical characteristics of the estimators with other popular least squares estimators of parameters for variogram model by simulation study. The QLE method for estimating spatial dependence has the advantages that it does not need the concept of lags commonly required for least squares estimation methods as well as its statistical superiority. The QLE method also shows the statistical superiority to the other methods for the tested Gaussian and non-Gaussian spatial processes.

Small Area Estimation Using Bayesian Auto Poisson Model with Spatial Statistics (공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계)

  • Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.421-430
    • /
    • 2006
  • In sample survey sample designs are performed by geographically-based domain such as countries, states and metropolitan areas. However mostly statistics of interests are smaller domain than sample designed domain. Then sample sizes are typically small or even zero within the domain of interest. Shin and Lee(2003) mentioned Spatial Autoregressive(SAR) model in small area estimation model-based method and show the effectiveness by MSE. In this study, Bayesian Auto-Poisson Model is applied in model-based small area estimation method and compare the results with SAR model using MSE ME and bias check diagnosis using regression line. In this paper Survey of Disability, Aging and Cares(SDAC) data are used for simulation studies.