Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.4.8

Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)  

Youn, Youjeong (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kim, Seoyeon (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Jeong, Yemin (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Cho, Subin (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kang, Jonggu (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kim, Geunah (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Lee, Yangwon (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.4, 2021 , pp. 777-788 More about this Journal
Abstract
Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.
Keywords
Aerosol optical depth; Gap-filling; Discrete cosine transform; Fast marching method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhao, C., Z. Liu, Q. Wang, J. Ban, N.X. Chen, and T. Li, 2019. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region, Atmospheric Environment, 203: 70-78.   DOI
2 Li, C., A.H. Lau, J. Mao, and D.A. Chu, 2005. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong, IEEE Transactions on Geoscience and Remote Sensing, 43(11): 2650-2658.   DOI
3 Youn, Y., S. Kim, Y. Jeong, S. Cho, and Y. Lee, 2020. Evaluation of the DCT-PLS method for spatial gap filling of gridded data, Korean Journal of Remote Sensing, 36(6): 1407-1419 (in Korean with English abstract).   DOI
4 Nichol, J.E., M.S. Wong, and J. Wang, 2010. A 3D aerosol and visibility information system for urban areas using remote sensing and GIS, Atmospheric Environment, 44(21-22): 2501-2506.   DOI
5 Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini,J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevag, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, 2006. An AeroCom initial assessment-optical properties in aerosol component modules of global models, Atmospheric Chemistry and Physics, 6(7): 1815-1834.   DOI
6 Garay, M.J., O.V. Kalashnikova, and M.A. Bull, 2017. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data, Atmospheric Chemistry and Physics, 17(8): 5095-5106.   DOI
7 Higurashi, A., T. Nakajima, B.N. Holben, A. Smirnov, R. Frouin, and B. Chatenet, 1999. A study of global aerosol optical climatology with two-channel AVHRR remote sensing, Journal of Climate, 13(12): 2011-2027.   DOI
8 Hoff, R., H. Zhang, N. Jordan, A. Prados, J. Engel-Cox, A. Huff, S. Weber, E. Zell, S. Kondragunta, J. Szykman, B. Jonhs, F. Dimmick, A. Wimmers, J. Al-Saadi, and C. Kittaka, 2009. Applications of the three-dimensional air quality system to western US air quality: IDEA, Smog Blog, Smog Stories, AirQuest, and the Remote Sensing Information Gateway, Journal of the Air&Waste Management Association, 59(8): 980-989.   DOI
9 Levy, R.C., L. Remer, S. Mattoo, E. Vermote, and Y. . Kaufman, 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, Journal of Geophysical Research: Atmospheres, 112(D13): D13211.
10 Levy, R.C., S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, and N.C. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6(11): 2989-3034.   DOI
11 Jin, K., 2018. LEO and GEO satellite programs for space-borne measurement of aerosol, Current Industrial and Technological Trends in Aerospace, 16(1): 53-62 (in Korean with English abstract).
12 Hsu, N.C., M.J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, and S.C. Tsay, 2013. Enhanced deep blue aerosol retrieval algorithm: The second generation, Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315.   DOI
13 Hsu, N.C., S.C. Tsay, M.D. King, and J.R. Herman, 2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3180-3195.   DOI
14 Jee, J.B., K.T. Lee, K.H. Lee, and I.S. Zo, 2020. Development of GK-2AAMI aerosol detection algorithm in the East-Asia region using Himawari-8AHI data, Asia-Pacific Journal of Atmospheric Sciences, 56(2): 207-223.   DOI
15 Kalashnikova, O.V., M.J. Garay, J.V. Martonchik, and D.J. Diner, 2013. MISR dark water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity, Atmospheric Measurement Techniques, 6(8): 2131-2154.   DOI
16 Schmit, T.J., P. Griffith, M.M. Gunshor, J.M. Daniels, S.J. Goodman, and W.J. Lebair, 2017. Acloser look at the ABI on the GOES-Rseries, Bulletin of the American Meteorological Society, 98(4): 681-698.   DOI
17 NMSC(National Meteorological Satellite Center), 2012. Technical analysis report of Aerosol Optical Depth algorithm (AOD-v2.0), National Meteorological Satellite Center, KR.
18 Park, R.S., S. Lee, S.-K. Shin, and C.H. Song, 2014, Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia, Atmospheric Chemistry and Physics, 14(4): 2185-2201.   DOI
19 Schmit, T.J., M.M. Gunshor, W.P. Menzel, J.J. Gurka, J. Li, and A.S. Bachmeier, 2005. Introducing the next-generation Advanced Baseline Imager on GOES-R, Bulletin of the American Meteorological Society, 86(8): 1079-1096.   DOI
20 Singh, M.K., R. Gautam, and P. Venkatachalam, 2017. Bayesian merging of MISR and MODIS aerosol optical depth products using error distributions from AERONET, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12): 5186-5200.   DOI
21 She, L., H.K. Zhang, Z. Li, G. de Leeuw, and B. Huang, 2020. Himawari-8 Aerosol Optical Depth (AOD) Retrieval using a deep neural network trained using AERONET observations, Remote Sensing, 12(24): 4125.   DOI
22 Kaufman, Y.J., I. Koren, L.A. Remer, D. Rosenfeld, and Y. Rudich, 2005. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, Proceedings of the National Academy of Sciences, 102(32): 11207-11212.   DOI
23 Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with missing values, Computational Statistics & Data Analysis, 54(4): 1167-1178.   DOI
24 Yu, C., L. Chen, L. Su, M. Fan, and S. Li, 2011. Kriging interpolation method and its application in retrieval of MODIS aerosol optical depth, Proc. of 19th International Conference on Geoinformatics, Shanghai, CN, Jun. 24-26, pp. 1-6.
25 Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno,A. Okuyama, R. Oyama,Y. Sasaki, Y. Shimazu, K. Shimoji, Y. Sumaida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016. An introduction to Himawari-8/9 Japan's new-generation geostationary meteorological satellites, Journal of the Meteorological Society of Japan, 94(2): 151-183.   DOI
26 Fan, Q., X. Hu, and L. Zhang, 2013. Image painting based FMM algorithm using gradient matrix, Proc. of the 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing 2013 (ICISIP2013), Kitakyushu, JP, Sep. 26-27, pp. 47-50.
27 Albrecht, B.A., 1989. Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923): 1227-1230.   DOI
28 Bae, M.S., D.J. Park, K.H. Lee, S.S. Cho, K.Y. Lee, and K. Park, 2017. Determination of analytical approach for ambient PM 2.5 free amino acids using LC-MSMS, Journal of Korean Society for Atmospheric Environment, 33(1): 54-63 (in Korean with English abstract).   DOI
29 Gao, L., L. Chen, C. Li, J. Li, H. Che, and Y. Zhang, 2021. Evaluation and possible uncertainty source analysis of JAXA Himawari-8 aerosol optical depth product over China, Atmospheric Research, 248: 105248.   DOI
30 Eilers, P.H., 2003. A perfect smoother, Analytical Chemistry, 75(14): 3631-3636.   DOI
31 Tang, Q., Y. Bo, and Y. Zhu, 2016. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method, Journal of Geophysical Research: Atmospheres, 121(8): 4034-4048.   DOI
32 Telea, A., 2004. An image inpainting technique based on the fast marching method, Journal of Graphics Tools, 9(1): 23-34.   DOI
33 Twomey, S.J. A.E., 1974. Pollution and the planetary albedo, Atmospheric Environment (1967), 8(12): 1251-1256.   DOI
34 Wahba, G.,1990. Spline models for observational data, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
35 Wang, G., D. Garcia, Y. Liu, R. De Jeu, and A. J. Dolman, 2012. A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations, Environmental Modelling & Software, 30: 139-142.   DOI
36 Zhang, H., S. Kondragunta, I. Laszlo, H. Liu, L.A. Remer,J. Huang, S. Superczynski, and P. Ciren, 2016. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database, Journal of Geophysical Research: Atmospheres, 121(18): 10717-10738.   DOI
37 Kim, S., Y. Jeong, Y. Youn, S. Cho, J. Kang, G. Kim, and Y. Lee, 2021. A Comparison between multiple satellite AOD products using AERONET sun photometer observations in South Korea: Case study of MODIS, VIIRS, Himawari-8, and Sentinel-3, Korean Journal of Remote Sensing, 37(3): 543-557 (in Korean with English abstract).   DOI
38 Kikuchi, M., H. Murakami, K. Suzuki, T.M. Nagao, and A. Higurashi, 2018. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite, IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3442-3455.   DOI
39 Kim, K., D. Lee, K.Y. Lee, K. Lee, and Y. Noh, 2016. Estimation of surface-level PM 2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea, Korean Journal of Remote Sensing, 32(5): 413-421 (in Korean with English abstract).   DOI
40 Kim, S.M., J. Yoon, K.J. Moon, D.R. Kim, J.H. Koo, M. Choi, K.N. Kim, and Y.G. Lee, 2018. Empirical estimation and diurnal patterns of surface PM 2.5 concentration in Seoul using GOCIAOD, Korean Journal of Remote Sensing, 34(3): 451-463 (in Korean with English abstract).   DOI
41 Whittaker, E.T., 1923. On a new method of graduation, Proceedings of the Edinburgh Mathematical Society, 41: 63-75.   DOI
42 Lee, G.T., S.W. Ryu, T.Y. Lee, and M.S. Suh, 2020. Analysis of AOD characteristics retrieved from Himawari-8 using sun photometer in South Korea, Korean Journal of Remote Sensing, 36(3): 425-439 (in Korean with English abstract).   DOI
43 Lee, K.H. and K.T. Lee, 2018. Detection and classification of major aerosol type using the Himawari-8/AHI Observation Data, Journal of Korean Society for Atmospheric Environment, 34(3): 493-507 (in Korean with English abstract).   DOI
44 JMA(Japanese Meteorological Agency), 2021, Himawari User's Guide, available at https://www.data.jma.go.jp/mscweb/en/support/support.html, Accessed on Aug. 4, 2021.
45 Yang, S.H., J.I. Jeong, R.J. Park, M.J. Kim, 2020. Impact of meteorological changes on particulate matter and aerosol optical depth in Seoul during the months of June over recent decades, Atmosphere, 11(12): 1282.   DOI
46 Yoshida, M., M. Kikuchi, T.M. Nagao, H. Murakami, T. Nomaki, and A. Higurashi, 2018. Common retrieval of aerosol properties for imaging satellite sensors, Journal of the Meteorological Society of Japan, Ser. II, 96B: 193-209.   DOI
47 Zanobetti, A., and J. Schwartz, 2009. The effect of fine and coarse particulate air pollution on mortality: a national analysis, Environmental health perspectives, 117(6): 898-903.   DOI
48 Wang, K., R.E. Dickinson, and S. Liang, 2009. Clearsky visibility has decreased overland globally from 1973 to 2007, Science, 323(5920): 1468-1470.   DOI