• Title/Summary/Keyword: Spatial Modeling

Search Result 1,248, Processing Time 0.025 seconds

Applicability of Flash LADAR to 3D Spatial Information Acquisition on a Construction Site;Performance Review (건설 산업에서의 3차원 공간 모델링을 위한 플래시 레이다의 적용성 검토에 관한 연구)

  • Son, Hyo-Joo;Kim, Chang-Wan;Yoo, Ji-Yeon;Kim, Hyoung-Kwan;Han, Seung-Heon;Kim, Moon-Kyum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.909-914
    • /
    • 2007
  • Today's dynamic nature of the construction environment requires management systems to be active enough to take real-time decisions. For real-time decision making, effective 3D spatial information acquisition is imperative. Various 3D data acquisition technologies are being developed and tested for 3D spatial information acquisition and its use for wide range of areas in the construction industry, however, there are shortcomings in these technologies. The major problems are long processing time and high cost which make current technologies impossible to be used for real-time applications. Laser-based Flash LADAR that illuminates the entire scene with diffuse laser light is comparatively fast and cost effective, therefore it is well suited for 3D spatial modeling of dynamic environment on a construction site. This paper presents experimental results to evaluate the performance of flash LADAR and discuss issues of applicability of Flash LADAR to 3D spatial modeling on a construction site.

  • PDF

A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea (농지 공간격자 자료의 층화랜덤샘플링: 농업시스템 기후변화 영향 공간모델링을 위한 국내 농지 최적 층화 및 샘플 수 최적화 연구)

  • Minyoung Lee;Yongeun Kim;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.526-535
    • /
    • 2021
  • Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.

Efficient 3D Modeling Automation Technique for Underground Facilities Using 3D Spatial Data (3차원 공간 데이터를 활용한 지하시설물의 효율적인 3D 모델링 자동화 기법)

  • Lee, Jongseo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1670-1675
    • /
    • 2021
  • The adoption of smart construction technology in the construction industry is progressing rapidly. By utilizing smart construction technologies such as BIM (Building Information Modeling), drones, artificial intelligence, big data, and Internet of Things technology, it has the effect of lowering the accident rate at the construction site and shortening the construction period. In order to introduce a digital twin platform for construction site management, real-time construction site management is possible in real time by constructing the same virtual space. The digital twin virtual space construction method collects and processes data from the entire construction cycle and visualizes it using a 3D model file. In this paper, we introduce a modeling automation technique that constructs an efficient digital twin space by automatically generating 3D modeling that composes a digital twin space based on 3D spatial data.

Modeling Our World

  • Park, Jong-Rae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.3-20
    • /
    • 2000
  • PDF

3D Spatial Distribution Modeling for Petrophysical Property of Gas Hydrate-Bearing Sediment using Well Data in Ulleung Basin (울릉분지 시추공 분석 자료를 이용한 가스하이드레이트 함유층의 3차원 공간 물성 분포 추정)

  • Lee, Dong-Gun;Shin, Hyo-Jin;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.156-168
    • /
    • 2013
  • Drilling expedition #1 in 2007 and drilling expedition #2 in 2010 were performed for gas hydrate resources evaluation and optimal site selection of pilot test in Ulleung basin, East Sea, Korea. This study presents to build the 3D spatial distribution models using the estimated sedimentary facies, porosity, and gas hydrate saturation derived by well logs and core analysis data from UBGH1-4, UBGH1-9, UBGH1-10, UBGH1-14, UBGH2-2-1, UBGH2-2-2, UBGH2-6, UBGH2-9, UBGH2-10 and UBGH2-11. The objective of 3D spatial distribution modeling is to build a geological representation of the gas hydrate-bearing sediment that honors the heterogeneity in 3D grid scale. The facies modeling is populating sedimentary facies into a geological grid using sequential indicator simulation. The porosity and gas hydrate saturation modeling used sequential Gaussian simulation to populate properties stochastically into grid cells.

Application of Smart Geospatial Information for Modeling and Analysis of City River (도시하천 분석과 모델링을 위한 스마트 지형공간정보의 응용)

  • Lee, Hyun Jik;Eom, Jun Sik;Yu, Young Geol;Park, Eun Gwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.135-142
    • /
    • 2013
  • This study aims to seek adequate and optimized method of applying high quality three-dimensional spatial data created via high-resolution digital aerial photograph image and aerial LiDAR data onto three-dimensional planning of environmentally friendly, ecological restoration of rivers in accordance with irrigation and flood control objectives of urban rivers. Through three-dimensional modeling of before and after the restoration, the research also offers basic information regarding restorations of rivers. Also the transition from the conventional two-dimensional planning into three-dimensional planning environment using smart spatial information acquire accuracy of river analysis, analyze possible civil complaints and suggest solutions to potential problems.

A Comparison between In-situ PET and ENVI-met PET for Evaluating Outdoor Thermal Comfort

  • Jeong, Da-in;Park, Kyung-hun;Song, Bong-guen
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Purpose: PMV, PET, and similar thermal comfort indices and microclimate modeling have recently become actively used to evaluate thermal comfort. This study will look at pedestrian roads with diverse spatial characteristics on university campus using the ENVI-met model as the base for onsite measurement. Method: The PET was used as the thermal comfort index. The first microclimate measures were collected on September 20, 2014, and the second microclimate measures were collected on June 1, 2015. The ENVI-met model was used at the same time. Result: As a results, Onsite measurement results differed depending on the PET spatial characteristics. The location associated with the most discomfort had a PET of $47.8^{\circ}C$. The spatial characteristics of this place included a with no shade. The most comfortable location had shade, and the PET was $24.6^{\circ}C$. When the ENVI-met model and onsite measurements were compared, similar patterns were found, but with a few differences at specific points; this was due to the limitation of using input materials such as trees, buildings, and covering materials with the ENVI-met model. This factor must be thoroughly considered when analyzing modeling results.

A Study on Civil BIM Description Neutral Library Development Direction for modeling the Construction Spatial Information (건설 공간 정보 모델링을 위한 토목 BIM 묘사 중립 라이브러리 개발 방향)

  • Kang, Tae Wook;Lee, Jae Wook;Lee, Woo Sik;Choi, Hyun Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.145-151
    • /
    • 2012
  • The purpose of the present study is to suggest the development direction for the neutral library which can describe the parametric modeling and design algorithm to design the construction spatial information which is known as BIM. To do this, we surveyed the recent research related to neutral library and analyzed the library technology of BIM modeler such as Revit, Archicad. By using this result, we suggested the development direction based on BIM description script language for the neutral BIM library including the parametric design and the algorithm definition.

The Analysis of Accuracy in According to the Registration Methods of Terrestrial LiDAR Data for Indoor Spatial Modeling (건물 실내 공간 모델링을 위한 지상라이다 영상 정합 방법에 따른 정확도 분석)

  • Kim, Hyung-Tae;Pyeon, Mu-Wook;Park, Jae-Sun;Kang, Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2008
  • For the indoor spatial modeling by terrestrial LiDAR and the analyzing its positional accuracy result, two terrestrial LiDARs which have different specification each other were used at test site. This paper shows disparity of accuracy between (1) the structural coordinate transformation by point cloud unit using control points and (2) the relative registration among all point cloud units then structural coordinate transformation in bulk, under condition of limited number of control points. As results, the latter had smaller size and distribution of errors than the former although different specifications and acquistion methods are used.

A Novel 3D Modeling Technique by Spatial Tiling of the Pre-defined Cubical Grids (정의된 육면 격자의 공간 타일링에 의한 3차원 모델링)

  • Nam, Sang-Hun;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.103-108
    • /
    • 2008
  • In case of the 3D Sketch System for spatial modeling, The use of 3D input devices in 3D environment is the best method to express designer's intention. However, the designer's 3D drawing skill is not accurate. 80, we use the multiple strokes used generally by 2D sketch. Multiple strokes make the designer recognize model's current drawing features and what he change We use the cubic-based drawing method to calculate many surfaces in real time. We arrange the relations of cubes for composing surfaces and multi strokes. We implement the sketch system taking cubic modeling and multiple strokes technique.

  • PDF