• Title/Summary/Keyword: Spatial Model

Search Result 5,149, Processing Time 0.033 seconds

A Spatial Statistical Approach on the Correlation between Walkability Index and Urban Spatial Characteristics -Case Study on Two Administrative Districts, Busan- (도시 공간특성과 Walkability Index의 상관성에 관한 공간통계학적 접근 -부산광역시 2개 구를 대상으로-)

  • Choi, Don Jeong;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.343-351
    • /
    • 2014
  • The correlation between regional Walkability Index and their physical socio-economic characteristics has evaluated by the spatial statistical analysis to understand the urban pedestrian environments, where has been emerging the significance, recently. Following to the study, the Walkability Indexes were calculated quantitatively from two administrative districts of Busan and measured Global Local spatial autocorrelation indices. Additionally, the Geographically Weighted Regression model was applied to define the correlation between Walkability Indexes and urban environmental variables. The spatial autocorrelation values and clusters on the Walkability Indexes were derived in statistically significant level. Furthermore, the Geographically Weighted Regression model has been derived more improved inference than the OLS regression model, so as the influence of local level pedestrian environment was identified. The results of this study suggest that the spatial statistical approach can be effective on quantitative assessing the pedestrian environment and navigating their associated factors.

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • Lee, Jiyeong;Kang, Hye Young;Kim, Yun Ji
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.31-44
    • /
    • 2014
  • According to the purpose of applications, the application program will utilize the most suitable data model and 3D modeling data would be generated based on the selected data model. In these reasons, there are various data sets to represent the same geographical features. The duplicated data sets bring serious problems in system interoperability and data compatibility issues, as well in finance issues of geo-spatial information industries. In order to overcome the problems, this study proposes a spatial data fusion method using topological relationships among spatial objects in the feature classes, called Topological Relation Model (TRM). The TRM is a spatial data fusion method implemented in application-level, which means that the geometric data generated by two different data models are used directly without any data exchange or conversion processes in an application system to provide indoor LBSs. The topological relationships are defined and described by the basic concepts of IndoorGML. After describing the concepts of TRM, experimental implementations of the proposed data fusion method in 3D GIS are presented. In the final section, the limitations of this study and further research are summarized.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

Spatiotemporal Location Fingerprint Generation Using Extended Signal Propagation Model

  • Kim, Hee-Sung;Li, Binghao;Choi, Wan-Sik;Sung, Sang-Kyung;Lee, Hyung-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.789-796
    • /
    • 2012
  • Fingerprinting is a widely used positioning technology for received signal strength (RSS) based wireless local area network (WLAN) positioning system. Though spatial RSS variation is the key factor of the positioning technology, temporal RSS variation needs to be considered for more accuracy. To deal with the spatial and temporal RSS characteristics within a unified framework, this paper proposes an extended signal propagation mode (ESPM) and a fingerprint generation method. The proposed spatiotemporal fingerprint generation method consists of two algorithms running in parallel; Kalman filtering at several measurement-sampling locations and Kriging to generate location fingerprints at dense reference locations. The two different algorithms are connected by the extended signal propagation model which describes the spatial and temporal measurement characteristics in one frame. An experiment demonstrates that the proposed method provides an improved positioning accuracy.

Verification and Evaluation of Spatial Structure Theory through Discrete Event Simulation (이산사건 시뮬레이션을 이용한 공간구조론의 검증 및 평가)

  • Yoon, So Hee;Kim, Suk Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.2000-2013
    • /
    • 2016
  • The purpose of this study is to validate the validity of the methodology for analyzing the space with complex characteristics and to evaluate the existing spatial structure analysis theory. Seven example models are designed and analyzed data of spatial syntax analysis and visibility graph analysis. And analyzed the agent-based model using two analytical methods: the adjacent space and the whole spatial connection. The results of this study are as follows. Based on the analysis of the agent - based model for perfectly freewalking, the validity of the method is verified in terms of predictive ability and effectiveness. Agent-based models can be simulated considering various variables, so realistic predictions will be possible and a new biography of complex systems can be met.

GIS Data Modeling Plan for Tidal Power Energy Development in Incheon Bay of Korea (인천만 조력에너지 개발을 위한 GIS 데이터모델링)

  • Oh, Jung-Hee;Choi, Hyun-Woo;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.2-166.2
    • /
    • 2011
  • Incheon Bay of Korea is one of the most famous regions for high tidal range. Ministry of Land, Transport and Maritime Affairs(MLTM) has implemented preliminary investigation for tidal power energy development in this area since 2006. Through field observations, various kinds of marine data consisting of depth and geography, marine weather, tidal currents, wave, seawater characteristics, geology, marine ecosystem and marine environment were gathered. To use these data efficiently for the determining of feasibility of developing and appropriateness of project scale, spatial data management and application system is essential. Therefore, in this study, the concept, methodology and procedure of spatial data modeling are defined for tidal energy development. Spatial data modeling consists of essential model relating to tidal energy directly and optional model including environmental factors. Essential model is composed with fundamental elements like as depth, geography, and several numerical modeling results(tide, tidal current, wave).

  • PDF

A Comparative Analysis of Landslide Susceptibility Assessment by Using Global and Spatial Regression Methods in Inje Area, Korea

  • Park, Soyoung;Kim, Jinsoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.579-587
    • /
    • 2015
  • Landslides are major natural geological hazards that result in a large amount of property damage each year, with both direct and indirect costs. Many researchers have produced landslide susceptibility maps using various techniques over the last few decades. This paper presents the landslide susceptibility results from the geographically weighted regression model using remote sensing and geographic information system data for landslide susceptibility in the Inje area of South Korea. Landslide locations were identified from aerial photographs. The eleven landslide-related factors were calculated and extracted from the spatial database and used to analyze landslide susceptibility. Compared with the global logistic regression model, the Akaike Information Criteria was improved by 109.12, the adjusted R-squared was improved from 0.165 to 0.304, and the Moran’s I index of this analysis was improved from 0.4258 to 0.0553. The comparisons of susceptibility obtained from the models show that geographically weighted regression has higher predictive performance.

A Study on Linear Spectral Mixing Model for Hyperspectral Imagery with Geometric Method (기하학적 기법을 이용한 하이퍼스펙트럴 영상의 Linear Spectral Mixing모델에 관한 연구)

  • 장은석;김대성;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.11a
    • /
    • pp.23-29
    • /
    • 2003
  • Detection in remotely sensed images can be conducted spatially, spectrally or both [2]. If the images have high spatial resolution, materials can be detected by using spatial and spectral information, unless we can't see the object embedded in a pixel. In this paper, we intend to solve the limit of spatial resolution by using the hyperspectral image which has high spectral resolution. Therefore, the Linear Spectral Mixing(LSM) Model which is sub-pixel detection algorithm is used to solve this problem. To find class Endmembers, we applied Geometric Model with MNF(Minimum Noise Fraction) transformation. From the result of sub-pixel detection algorithm, we can see the detection of water is satisfied and the object shape cannot be extracted but the possibility of material existence can be identified.

  • PDF

Empirical variogram for achieving the best valid variogram

  • Mahdi, Esam;Abuzaid, Ali H.;Atta, Abdu M.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.547-568
    • /
    • 2020
  • Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the variograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we traditionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN) showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The analysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in groundwater dataset.