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Abstract
Landslides are major natural geological hazards that result in a large amount of property damage each year, 

with both direct and indirect costs. Many researchers have produced landslide susceptibility maps using 
various techniques over the last few decades. This paper presents the landslide susceptibility results from 
the geographically weighted regression model using remote sensing and geographic information system data 
for landslide susceptibility in the Inje area of South Korea. Landslide locations were identified from aerial 
photographs. The eleven landslide-related factors were calculated and extracted from the spatial database 
and used to analyze landslide susceptibility. Compared with the global logistic regression model, the Akaike 
Information Criteria was improved by 109.12, the adjusted R-squared was improved from 0.165 to 0.304, and the 
Moran’s I index of this analysis was improved from 0.4258 to 0.0553. The comparisons of susceptibility obtained 
from the models show that geographically weighted regression has higher predictive performance.
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1. Introduction

Over the last decade, natural disasters such as hurricanes, 
earthquakes, extreme erosion, tsunamis, and landslides 
have increased sharply. Because of increasing threats from 
these phenomena, national and local government agencies 
have expressed concern for human injuries and economic 
loss (Yilmaz, 2009). Landslides, which account for 4.4% of 
natural disasters around the world, have increased rapidly in 
frequency and cause significant damage (1990-2009) (Akgun 
et al., 2008; Vos et al., 2010; Park et al., 2013). This trend will 
continue in the coming decades, as regional precipitation, 
deforestation, urbanization, and development increase 
(Schuster, 1996).

Under these circumstances, interest in landslide assessment 

has grown significantly among experts in various fields, such 
as engineers, geologists, planners, local administrators, 
and decision makers (Ercanoglu and Gokceoglu, 2004). 
Assessment and management of landslide damage can be 
aided by thematic mapping, with the following steps: 1. 
Landslide inventory maps; 2. Landslide susceptibility maps; 
3. Landslide hazard maps; and 4. Landslide risk maps (Kamp 
et al., 2008). Among these maps, the production of a landslide 
susceptibility map in the early stage of the assessment process 
is of crucial importance. 

Landslide susceptibility maps have been drawn using 
various methods across numerous research studies. The 
methods are divided into qualitative and quantitative. 
Currently, quantitative techniques are widely used, aided 
by the technological development of GIS (Geographical 
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Information Systems), which provide a powerful tool for 
managing and manipulating spatial data. Quantitative 
techniques are based on numerical expressions of the 
relationships between controlling factors and landslides 
(Aleotti and Chowdhury, 1999). Quantitative techniques 
are divided into deterministic and statistical methods (either 
bivariate or multivariate), and the majority of researchers 
prefer the GLR (Global Logistic Regression) model, a 
statistical method (Ayalew and Yamagishi, 2005; Bai et al., 
2010; Bui et al., 2011; Chauhan et al., 2010; Chen and Wang, 
2007; Falaschi et al., 2009; Xu et al., 2013).

However, the GLR model cannot take into account the 
spatial dependence or autocorrelation characteristics of 
observational data (Erener and Düzgün, 2010). This reduces 
the efficiency of estimated parameters when evaluating 
landslide susceptibility. Therefore, the GWR (Geographically 
Weighted Regression) has been introduced as a method that 
incorporates spatial variation (Feuillet et al., 2014). Because 
the GWR model uses a regression model, the advantages of 
existing models can be applied, and different factors can be 
estimated for respective regions. This makes it possible to 
confirm a spatially heterogeneous pattern that is difficult 
to grasp with existing models. Additionally, it enables the 
visualization of spatial interactions among data by mapping 
the results of the GWR analysis using GIS (Ercanoglu and 
Gokceoglu, 2004).

The goal of our study is to analyze and quantify 
improvements in the accuracy and explanatory power of 
landslide susceptibility compared with a previously used the 
GLR model when analyzing landslide susceptibility using 
the GWR. To accomplish this, the Inje region was selected 
as the research area, as it was subjected to severe landslide 
damage in 2006. A spatial database of landslide-related 
factors was compiled using the DEM (Digital Elevation 
Model) and various thematic maps. The GWR model was 
analyzed and compared with the GLR model analysis results 
using conformity-measured values and various diagnostic 
indices. 

2. Study Area

Approximately 81% of the total area of Gangwon-do in the 

central eastern region of Korea is composed of mountains. 
Most of these mountains have steep and rough terrain with 
2 m or less of effective soil depth: suitable conditions for 
landslides (Im, 2009).Three instances of localized heavy 
rainfalls occurred in the Gangwon-do area in 2006 (July 11–
13, July 14–20, July 25–29), including Ewiniar, a category 
3 typhoon. These rains were regionally concentrated in the 
Inje, Yangyang, and Pyeongchang areas, with the heaviest 
rainfall in about 500 years lasting for about 1–6 hours (Lee 
and Talib, 2005). This caused approximately 160 billion 
won in property damage and resulted in 40 or more human 
deaths. According to Kim et al. (2012), landslides occurred in 
about 400 locations around Inje-eup, Girin-myun, and Nam-
myun, Inje-gun. Among these, a survey revealed that Inje-
eup experienced the most landslides and the most damage.
Therefore, the entire area of Inje-eup was selected as the 
study area for this analysis of landslide susceptibility (Fig. 1).

3. Data set and methodology

3.1. Landslide identification

Accurate identification of landslide locations is critical 
to analyses of landslide hazards. Field surveys are the most 
accurate way to identify landslide locations, but terrain and 
environmental conditions may make it difficult and costly 
to access these areas as an initial landslide identification 
method. Remote sensing methods using data such as aerial 
photos and satellite imagery are more effective due to their 
lower cost, and are widely used to identify landslide locations 
(Liangjie et al., 2012).

Landslide locations for this study were identified using 
aerial photos taken soon after landslide occurrences. Aerial 
photos taken on 2 August 2006 using the PKNU (Pukyong 

Fig. 1. Study area
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National University) IV system were used to identify the 
locations of landslides that had occurred in the Inje area in 
July 2006. The collected aerial photos were geometrically 
corrected using a 1:5,000 digital topographic map and then 
used to produce orthophotos by creating a mosaic using a 
DTM (Digital Terrain Model). Landslide locations were 
digitized by visual interpretation using orthorectified aerial 
photos.

3.2 Spatial dataset

Because landslides result from a combination of various 
factors such as topology, soil, and forest, these landslide-
related factors need to be built into a spatial database for 
landslide susceptibility analysis. The relevant thematic maps 
acquired from government were used to construct a spatial 
database (Table 1). A total of eleven landslide-related factors 
were compiled into a spatial database with 10×10-m cells 
relative to the research area using ArcGIS 10.2 software. 

The dataset consisted of  232 rows×370 columns, for a total 
of 85,840 cells, with landslides represented in 446 of the cells. 
A total of 446 cells were divided randomly into two groups, 
training and validation set. 624 cells, accounting for 70% 
of the total positive events (landslide affected areas), were 
randomly selected as the training set. In addition, cells of the 

negative events (landslide non-affected areas) were collected 
with same number of the positive events. The remaining 
portion of the training set was used as validation set. 

3.3. GLR

Regression approaches including linear regression, log-
linear regression and logistic regression can be considered a 
process to extract the coefficients of empirical relationships 
from observations (Ozdemir and Altural, 2013). The goal 
of GLR is to find the best-fitting model to describe the 
relationship between a dichotomous depend variable (the 
presence or absence of landslides) and several explanatory 
variables.The explanatory variables may be continuous or 
discrete (with dummy variables) and do not need a normal 
frequency distribution (Ayalew and Yamagishi, 2005; Van 
Den Eeckhaut et al., 2006). Quantitatively, the relationship 
between depend variable and explanatory variables can be 
expressed in Eq. (1).
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where, P is the probability of landslide occurrence, ranging 
between 0 and 1 on an s-shaped curve, and z represents a 
linear combination of the variables through Eq. (2).

Main data sets Produced map GIS data type Scale Source

Topographic map Slope GRID 1:5,000 National Geographic Institute

　 Aspect cosine GRID 1:5,000 　

　 Aspect sine GRID 1:5,000 　

　 Slope degree GRID 1:5,000 　

　 Slope length GRID 1:5,000 　

　 Curvature GRID 1:5,000 　

　 Topographic wetness index GRID 1:5,000 　

Soil map Drainage Polygon 1:25,000 Science and Technology

　 Effective thickness Polygon 1:25,000 　

Forest map Diameter Polygon 1:25,000 National forest Research Institute

　 Density Polygon 1:25,000 　

Table 1. Data type and scale of data used in the study



Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 6, 579-587, 2015

582  

    
       

 
    
 
                          
 
                                            
 
                            

             

 
                              

 
              

 
                     

 
                

 (2)

where, 

    
       

 
    
 
                          
 
                                            
 
                            

             

 
                              

 
              

 
                     

 
                

 is the intercept of the model, 

    
       

 
    
 
                          
 
                                            
 
                            

             

 
                              

 
              

 
                     

 
                

are the regression coefficients, and 
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the explanatory variables (Youssef et al., 2015). The value z 
varies from 
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.
A positive sign of the probability represents that the 

explanatory variables has increased the probability of 
change, and a negative sign indicates the opposite effect. In 
addition, maximizing likelihood function is used to obtain 
the regression coefficients. A coefficient is significant if the 
tested null hypothesis that the estimated coefficient was zero 
could be rejected at a 0.05 significance level(Hosmer and 
Lemeshow, 2000; Kleinbaum and Klein, 2002; Van Den 
Eeckhaut et al., 2006). 

In addition, multicollinearity among the independent 
variables is tested using the TOL (tolerance) and the VIF 
(Variance Inflation Factor) to improve the model fitting. 
The variables with VIF > 10 and TOL < 0.1 are represented 
serious multicollinearity between explanatory variables and 
excluded from the logistic analysis (Hosmer and Lemeshow, 
2000; Menard, 2002; Zhu and Huang, 2006). 

3.4. GWR

GWR, which is a local modeling technique, aims to 
capture spatial non-stationarity in the influence of factors 
on the occurrence of a landslide (Feuillet et al., 2014). The 
spatial non-stationarity is identified by generating a set of 
local-specific coefficients, including local R square, local 
model residuals, local parameter estimates as well as the 
corresponding t-test values (Fotheringham et al., 2002). The 
GWR model extends the OLS (Ordinary Regression Squares) 
regression by allowing regression coefficients to be estimated 
locally (Feuillet et al., 2014).

The GWR model can be expressed as:
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 are the spatial position of location j,  

    
       

 
    
 
                          
 
                                            
 
                            

             

 
                              

 
              

 
                     

 
                

 acts as intercept, and 

    
       

 
    
 
                          
 
                                            
 
                            

             

 
                              

 
              

 
                     

 
                

 is the local 
estimated coefficient for explanatory variables (Su et al., 2012). 

The GWR uses kernel bandwidth to determine the spatial 

scope of spatialdependence, and then employs distance 
decay function to weight all the observations within the 
spatial scope. Because it is assumed that observations near 
point i have more influence on the estimation of 

    
       

 
    
 
                          
 
                                            
 
                            

             

 
                              

 
              

 
                     

 
                

 
than observations located farther from i (Feuillet et al., 2014; 
Tu and Xia, 2008). The distance decay functions can be 
calculated by Gaussian and bi-square (Brunsdon et al., 1998; 
Fotheringham et al., 2002). In this research, the Gaussian 
distance decay is used to express the weight function: 
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where 
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neighborhood of observation 
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between observations 
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                , and h denotes the kernel 

bandwidth (Su et al., 2012). The CV (Cross-Validation) 
and AICc (Akaike Information Criterion) are used to 
select optimum bandwidth. The AICc is generally more 
applicable and can be applied in non-Gaussian GWR than 
CV (Fotheringham et al., 2002; Lloyd, 2010).

Three goodness-of-fit criteria such as deviance, AICc, and 
the BIC (Bayesian Information Criterion (BIC, also known 
as the Schwartz criterion) are used to consider both fit and 
complexity of the model. Lower values of these criteria 
indicate a more efficient model (Feuillet et al., 2014).

4. Results and Discussion

4.1. Logistic regression

The results of logistic regression model are represented 
in Table 2.All explanatory variables had the value of VIF 
< 10 and TOL > 0.1 respectively. This result indicated that 
there was no serious multicollinearity between explanatory 
variables. In addition, the significance probability value was 
less than 0.01 against all variables except for aspect sine, 
topographic wetness index, and soil thickness. This indicates 
that the other variables with exception of the above three 
variables had statistically significant effects on landslide at 
the 5% significance level. From the analysis results, Aspect 
sine, slope degree, slope length, soil drainage, soil thickness, 
timber diameter, and timber density had positive effects 
on landslide occurrence and showed a higher possibility of 
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landslide. On the other hand, the other variables except for 
the above variables had less effect on landslide occurrence. 
Timber diameter was the most influential of the landslide-
related factors, whereas aspect cosine contributed least to 
landslide occurrence.

4.2. GWR

Table 3 summarizes the spatially varying coefficients for 
714 sample points. All of the eleven explanatory variables 
have both positive and negative coefficient values although 
with differences in the portions of both values. This 

represented that the constant coefficient estimates in the 
logistic regression tent to make the spatially non-stationary 
process of landslide occurrence. The values of slope degree, 
slope length, and timber density represented over 80% of 
positive coefficients and the values of elevation and aspect 
cosine had over 80% of negative coefficients. Also, the values 
of aspect sin, curvature, topographic wetness index, soil 
drainage, soil thickness, and timber diameter had apparent 
divisions of positive and negative results. Such spatially 
varying coefficients are mostly ignored in the orthodox 
logistic models.

Variable Coefficient Std. Error t-statistic Sig. Tolerance VIF
Intercept 0.1870 0.1853 1.0089 0.3133 - -
Elevation -0.0015 0.0002 -6.3425 0.0000* 0.6686 1.4956 

Aspect cosine -0.0875 0.0223 -3.9188 0.0000* 0.9548 1.0474 
Aspect sin 0.01489 0.0222 0.6717 0.5019 0.9584 1.0434 

Slope degree 0.0055 0.0021 2.6573 0.0080* 0.6719 1.4883 
Slope length 0.0041 0.0014 2.8707 0.0042* 0.3910 2.5576 
Curvature -0.0139 0.0058 -2.4156 0.0159* 0.5775 1.7316 

Topographic wetness index -0.0044 0.0069 -0.6387 0.5232 0.3915 2.5540 
Soil drain 0.0930 0.0421 2.2077 0.0275* 0.5922 1.6887 

Soil thickness 0.0261 0.0321 0.8135 0.4161 0.7452 1.3420 
Timber diameter 0.0974 0.0220 4.4224 0.0000* 0.7757 1.2891 
Timber density 0.0842 0.0220 3.8260 0.0002* 0.7518 1.3302 

Table 2. Result of logistic regression

Variable Mean SD Min Max % positive % negative
Intercept -0.0617 0.7054 -2.5460 1.8137 55.83 44.17
Elevation -0.0010 0.0010 -0.0038 0.0021 9.19 90.81

Aspect cosine -0.0646 0.0726 -0.2291 0.2268 17.15 82.85
Aspect sin 0.0225 0.0916 -0.1005 0.3063 51.01 48.99

Slope degree 0.0049 0.0041 -0.0043 0.0183 87.89 12.11
Slope length 0.0042 0.0049 -0.0040 0.0210 90.13 9.87
Curvature -0.0126 0.0152 -0.0379 0.0241 24.33 75.67

Topographic wetness index -0.0033 0.0158 -0.0327 0.0291 36.77 63.23
Soil drain 0.1264 0.2027 -0.5917 0.5371 76.35 23.65

Soil thickness 0.0379 0.1251 -0.2506 0.3952 57.85 42.15
Timber diameter 0.0491 0.0675 -0.1813 0.2424 77.80 22.20
Timber density 0.0670 0.0643 -0.1346 0.2318 86.43 13.57

Table 3. Summary of spatially varying coefficients
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4.3. Comparison of model performances

The model performance between the GLR and the GWR 
models was compared using statistical parameters (Table 4). 
The GWR model showed significant improvement over the 
GLR. First, the GWR model had a much better goodness-
of-fit than the GLR though the significant decrease of -2 
Log likelihood. Second, the AICc index was 1148.2641 in 
the GLR model and 1049.1441 in the GWR model. If the 
difference in the AICc index between two models is greater 
than 4, the model is considered to be improved (Charlton and 
Fotheringham, 2009). The difference between two models in 
this study was 109.12, indicating that the conformity of the 
GWR model was significantly improved. Third, the adjusted 
R-squared value was 0.165 in the GLR model and 0.304 in 
the GWR model. Examination of model conformity reveals 

whether the general explanation power of the model has 
improved. Fourth, spatial autocorrelation can be examined 
more quantitatively using Moran’s I index. Moran’s I index in 
the GLR model was 0.3018 (p<0.01), indicating the existence 
of a spatial autocorrelation. However, Moran’s I index in the 
GWR model was 0.1765 (p<0.01), indicating that the spatial 
dependence evident in the standardized residual in the GWR 
model was removed through geographical weighting.

4.4. Spatial varying relationships 

The GWR model generates a set of coefficient estimates 
of explanatory variables for each landslide sample point. 
A set of coefficient surfaces based on the sample points 
with coefficient estimates were generated to reveal the 
spatially non-stationary relationship between landslide 

GLR GWR
Residual sum of squares 183.6933 134.6205

-2 Log likelihood 1121.8495 1019.8201
Corrected AICc 1148.2641 1039.1441

Adjusted R-square 0.1650 0.3040
Moran’s I of standardized residuals 0.3018 0.1765

Table 4. Comparison of GLR and GWR results

Fig. 2. GWR coefficient surfaces of elevation (a), aspect cosine (b), aspect sin (c), slope degree (d), slope length (e), curvature 
(f), topographic wetness index (g), soil drainage (h), soil thickness (i), timber diameter (j), and timber density (k)
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occurrence and explanatory variables. An IDW (Inverse 
Distance Weighted) interpolation was employed to generate 
coefficient surfaces. Fig.2 represents the coefficient surface 
of each explanatory variables. As an example, the coefficient 
of aspect cosine had a negative effect from the result of the 
GLR model and were mostly negative across the entire study 
area (Fig.2-b). However, although the coefficient of slope 
degree obtained from the GLR model had a positive effect 
on landslide occurrence, this did not hold true for the entire 
study area. From the result of the GWR model, slope degree 
had a stronger negative influence in the east of the study area 
than the west (Fig.2-d). 

5. Summary and Conclusions

This study analyzed landslide susceptibility in the Inje 
region. A spatial database was compiled using landslide-
related factors derived from aerial photographs and various 
thematic maps produced by the government. This study 
analyzed landslide susceptibility using a GWR model, 
compared it with the results of the GLR model analysis, and 
analyzed how much the model has improved. The adjusted 
R-squared value improved from 0.165 to 0.304 and the AICc, 
a conformity-measured value of a model, was 1148.2641 
in the GLR model and 1039.1441 in the GWR model, for 
a difference of 109.12. In addition, Moran’s I index for the 
GWR model was 0.1765 compared to 0.3018 for the GLR 
model for spatial dependence. From these result, the GWR 
model has significantly improved the GLR model with better 
goodness-of-fit. It also reduced the spatial dependence of 
residuals. 

Therefore, the GWR model was more powerful and 
effective in interpreting relationships between landslide-
related factors and landslide occurrence. Especially, 
character and strength of the relationships identified by 
the GWR model showed great spatial non-stationarity and 
scale-dependence. However, the GWR model still presents 
some disadvantages. The lack of independence among local 
estimates may led to the failure in valid inferences for the 
local estimates. In addition, when the number of sample is 
quite small, the estimated local coefficients can be ineffective 
or invalid (Su et al., 2012). 
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