• Title/Summary/Keyword: Spatial Error Model

Search Result 439, Processing Time 0.021 seconds

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.

Agroclimatology of North Korea for Paddy Rice Cultivation: Preliminary Results from a Simulation Experiment (생육모의에 의한 북한지방 시ㆍ군별 벼 재배기후 예비분석)

  • Yun Jin-Il;Lee Kwang-Hoe
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.2
    • /
    • pp.47-61
    • /
    • 2000
  • Agroclimatic zoning was done for paddy rice culture in North Korea based on a simulation experiment. Daily weather data for the experiment were generated by 3 steps consisting of spatial interpolation based on topoclimatological relationships, zonal summarization of grid cell values, and conversion of monthly climate data to daily weather data. Regression models for monthly climatological temperature estimation were derived from a statistical procedure using monthly averages of 51 standard weather stations in South and North Korea (1981-1994) and their spatial variables such as latitude, altitude, distance from the coast, sloping angle, and aspect-dependent field of view (openness). Selected models (0.4 to 1.6$^{\circ}C$ RMSE) were applied to the generation of monthly temperature surface over the entire North Korean territory on 1 km$\times$l km grid spacing. Monthly precipitation data were prepared by a procedure described in Yun (2000). Solar radiation data for 27 North Korean stations were reproduced by applying a relationship found in South Korea ([Solar Radiation, MJ m$^{-2}$ day$^{-1}$ ] =0.344 + 0.4756 [Extraterrestrial Solar Irradiance) + 0.0299 [Openness toward south, 0 - 255) - 1.307 [Cloud amount, 0 - 10) - 0.01 [Relative humidity, %), $r^2$=0.92, RMSE = 0.95 ). Monthly solar irradiance data of 27 points calculated from the reproduced data set were converted to 1 km$\times$1 km grid data by inverse distance weighted interpolation. The grid cell values of monthly temperature, solar radiation, and precipitation were summed up to represent corresponding county, which will serve as a land unit for the growth simulation. Finally, we randomly generated daily maximum and minimum temperature, solar irradiance and precipitation data for 30 years from the monthly climatic data for each county based on a statistical method suggested by Pickering et a1. (1994). CERES-rice, a rice growth simulation model, was tuned to accommodate agronomic characteristics of major North Korean cultivars based on observed phenological and yield data at two sites in South Korea during 1995~1998. Daily weather data were fed into the model to simulate the crop status at 183 counties in North Korea for 30 years. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to score the suitability of the county for paddy rice culture.

  • PDF

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data (Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정)

  • KIM, Kyoung-Seop;CHOUNG, Yun-Jae;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2022
  • Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

Spatial Variability of Soil Moisture Content, Soil Penetration Resistance and Crop Yield on the Leveled Upland in the Reclaimed Highland (고령지 개간지 밭의 토양수분과 경도 및 작물수량의 공간변이성)

  • Park, Chol-Soo;Yang, Su-Chan;Lee, Gye-jun;Lee, Jeong-Tae;Kim, Hak-Min;Park, Sang-Hoo;Kim, Dae-Hoon;Jung, Ah-Yeong;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • Spatial variability and distribution map of soil properties and the relationships between soil properties and crop yields are not well characterized in agroecosystems that have been land leveled to facilitate more cultivation of the new reclaimed sloping highland. Potato, onion, carrot, Chinese cabbage and radish were grown on the coarse sandy loam soil in 2004. Soil moisture content, soil penetration resistance and crop yield were sampled in the $10m{\times}50m$ field consisted of five plots. Sampling sites of each cultivation plot were 33 for the soil moisture, 11 for the soil penetration and 33 for the crop yield. The results of semivariance analysis, most of models were shown spherical equation. The significant ranges of each spatial variability model for the soil moisture, soil penetration and crop yield were broad as 33-35 meters in the potato cultivation plot, and that in the Chinese cabbage cultivation plot was narrow as 5-6 meters. The coefficient of variances (C.V.) of moisture, penetration and yield were various from 14 to 59 percents in five cultivation plots. The highest C.V. of potato yield was 59 percents, and that of the radish cultivation plot was as low as 14 percents. The required sample numbers for the determination of soil moisture content, soil penetration resistance and crop yield with error 10% at 0.05 significant level were ranged 8-40 for soil moisture, 7-25 for soil penetration and 424-4,678 for crop yield. The variogram and distribution map by kriging described field characteristics well so that the spatial variability would be useful for soil management for better efficiency and precision agriculture in the reclaimed highland.

A Study on Effect of Intellectual Study Cadastral Data Maintenance Business - Focusing on Uiwang-city - (지적공부 자료정비 사업의 효과에 관한 연구 - 경기도 의왕시를 중심으로 -)

  • Choe, cho-won;Shin, soon-ho
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.237-250
    • /
    • 2017
  • This study focuses on the maintenance of the registration details of the cadastral study (drawings, chiefs) in relation to Uiwang city real estate administration information unification project by the data maintenance business. The purpose of this study is to provide high quality data and improve the efficiency of data maintenance business in the unification of real estate administration information together with the intellectual study diffusion maintenance model in the future. In this study, based on the results of the intellectual study data maintenance project and the effectiveness of institutional, temporal and cost aspects, it was able to show the effect of the data maintenance project. And analyzed the current situation, typed the error shown here, and developed the maintenance plan and maintenance result.

A Tree Regularized Classifier-Exploiting Hierarchical Structure Information in Feature Vector for Human Action Recognition

  • Luo, Huiwu;Zhao, Fei;Chen, Shangfeng;Lu, Huanzhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1614-1632
    • /
    • 2017
  • Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.

Object Tracking in HEVC Bitstreams (HEVC 스트림 상에서의 객체 추적 방법)

  • Park, Dongmin;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.449-463
    • /
    • 2015
  • Video object tracking is important for variety of applications, such as security, video indexing and retrieval, video surveillance, communication, and compression. This paper proposes an object tracking method in HEVC bitstreams. Without pixel reconstruction, motion vector (MV) and size of prediction unit in the bitstream are employed in an Spatio-Temporal Markov Random Fields (ST-MRF) model which represents the spatial and temporal aspects of the object's motion. Coefficient-based object shape adjustment is proposed to solve the over-segmentation and the error propagation problems caused in other methods. In the experimental results, the proposed method provides on average precision of 86.4%, recall of 79.8% and F-measure of 81.1%. The proposed method achieves an F-measure improvement of up to 9% for over-segmented results in the other method even though it provides only average F-measure improvement of 0.2% with respect to the other method. The total processing time is 5.4ms per frame, allowing the algorithm to be applied in real-time applications.

Estimation of Fine-Scale Daily Temperature with 30 m-Resolution Using PRISM (PRISM을 이용한 30 m 해상도의 상세 일별 기온 추정)

  • Ahn, Joong-Bae;Hur, Jina;Lim, A-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • This study estimates and evaluates the daily January temperature from 2003 to 2012 with 30 m-resolution over South Korea, using a modified Parameter-elevation Regression on Independent Slopes Model (K-PRISM). Several factors in K-PRISM are also adjusted to 30 m grid spacing and daily time scales. The performance of K-PRISM is validated in terms of bias, root mean square error (RMSE), and correlation coefficient (Corr), and is then compared with that of inverse distance weighting (IDW) and hypsometric methods (HYPS). In estimating the temperature over Jeju island, K-PRISM has the lowest bias (-0.85) and RMSE (1.22), and the highest Corr (0.79) among the three methods. It captures the daily variation of observation, but tends to underestimate due to a high-discrepancy in mean altitudes between the observation stations and grid points of the 30 m topography. The temperature over South Korea derived from K-PRISM represents a detailed spatial pattern of the observed temperature, but generally tends to underestimate with a mean bias of -0.45. In bias terms, the estimation ability of K-PRISM differs between grid points, implying that care should be taken when dealing with poor skill area. The study results demonstrate that K-PRISM can reasonably estimate 30 m-resolution temperature over South Korea, and reflect topographically diverse signals with detailed structure features.

A New Parameter Estimation Method for a Zipf-like Distribution for Geospatial Data Access

  • Li, Rui;Feng, Wei;Wang, Hao;Wu, Huayi
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.134-140
    • /
    • 2014
  • Many reports have shown that the access pattern for geospatial tiles follows Zipf's law and that its parameter ${\alpha}$ represents the access characteristics. However, visits to geospatial tiles have temporal and spatial popularities, and the ${\alpha}$-value changes as they change. We construct a mathematical model to simulate the user's access behavior by studying the attributes of frequently visited tile objects to determine parameter estimation algorithms. Because the least squares (LS) method in common use cannot obtain an exact ${\alpha}$-value and does not provide a suitable fit to data for frequently visited tiles, we present a new approach, which uses a moment method of estimation to obtain the value of ${\alpha}$ when ${\alpha}$ is close to 1. When ${\alpha}$ is further away from 1, the method uses the associated cache hit ratio for tile access and uses an LS method based on a critical cache size to estimate the value of ${\alpha}$. The decrease in the estimation error is presented and discussed in the section on experiment results. This new method, which provides a more accurate estimate of ${\alpha}$ than earlier methods, promises more effective prediction of requests for frequently accessed tiles for better caching and load balancing.