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Abstract 
 

Bag of visual words is a popular model in human action recognition, but usually suffers from 
loss of spatial and temporal configuration information of local features, and large quantization 
error in its feature coding procedure. In this paper, to overcome the two deficiencies, we 
combine sparse coding with spatio-temporal pyramid for human action recognition, and 
regard this method as the baseline. More importantly, which is also the focus of this paper, we 
find that there is a hierarchical structure in feature vector constructed by the baseline method. 
To exploit the hierarchical structure information for better recognition accuracy, we propose a 
tree regularized classifier to convey the hierarchical structure information. The main 
contributions of this paper can be summarized as: first, we introduce a tree regularized 
classifier to encode the hierarchical structure information in feature vector for human action 
recognition. Second, we present an optimization algorithm to learn the parameters of the 
proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, 
Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree 
regularized classifier obtains better performance than SVM and other popular classifiers, and 
achieves promising results on the three datasets. 
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1. Introduction 

Human action recognition has been an important research area in computer vision for several 
decades, which has been widely used in video retrieval, human-computer interaction, etc. In 
recent years, bag of visual words (BOVW) has been verified as an both effective and efficient 
model for human action recognition. Generally, the application of traditional BOVW for 
human action recognition has three steps: feature extraction, feature coding, and pooling of all 
coding coefficients over the whole video to form the final feature vector [1]. However, there 
are two well-known drawbacks for the traditional BOVW model used for human action 
recognition, and many approaches have been proposed to cope with them. 

On the one hand, the traditional BOVW uses hard assignment (i.e. assign each feature to a 
visual word) in the second step, resulting in un-negligible quantization error. Thus a variety of 
soft assignment methods have been introduced to reduce the quantization error by assigning 
each feature to several visual words [1], such as sparse coding [2], kernel codebook [3], 
locality-constrained linear encoding [4], and Fisher kernel [5], etc. Among these methods, 
sparse coding has been validated as an effective feature coding method in human action 
recognition [1], which is often followed by max pooling operation [2]. 

On the other hand, for the traditional BOVW model, the feature vector of a video is 
generated by pooling of all coding coefficients over the whole video, failing to capture the 
informative spatial and temporal configuration information of local features, leading to 
inferior performance. Many approaches have been proposed to overcome this problem, and 
most of these approaches can be divided into two categories: context codebook construction 
[6-8] and spatio-temporal pyramid [9-11]. The context codebook construction approach takes 
into account the spatial and temporal neighbors of local features and utilize them to construct a 
context codebook, so the feature vector calculated on the context codebook has captured the 
spatial and temporal contextual information of local features [6-8]. The spatio-temporal 
pyramid is derived from the spatial pyramid used in image classification [12]. The basic idea 
of spatio-temporal pyramid is to divide the video into several regions, then take the 
concatenation of the feature vectors of all regions as the final feature vector of a video. 
Compared with context codebook construction approach, the spatio-temporal pyramid is easy 
to implement, which has been widely applied in human action recognition [9-11]. 

To overcome the two deficiencies of traditional BOVW and make use of the latest 
achievements in human action recognition, we combine sparse coding [2] with 
spatio-temporal pyramid [9] for human action recognition, and regard this method as the 
baseline in this paper. 

Generally speaking, the feature vector generated by the baseline method should be 
classified by support vector machine (SVM), since the SVM has been the most common 
classifier in human action recognition [1, 6-11]. However, the SVM uses L2 regularizer in its 
learning process, and the L2 regularizer penalizes each of the variables in feature vector 
separately, which can only convey trivial prior information about the feature vector [13]. In 
some cases, the variables in feature vector have structure relationships [14, 15]. For example, 
if a variable in feature vector is unrelated to a given classification task, some other variables 
will be unrelated, either, which is known as hierarchical structure [15]. The structure 
information of feature vector can be regarded as prior information for the classifier in the 
Bayesian framework [14, 15], thus a variety of structured regularizers have been proposed to 
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convey the prior information to the classifier, such as group regularizer [14], tree regularizer 
[15], etc. More importantly, the structure information embedded in classifier cannot only 
express prior information about the intended sparsity patterns, but also boost the classification 
accuracy [13], which has been successfully applied in text categorization [16, 17], display 
advertising [18], etc.  

In this paper, we find that the feature vector generated by the baseline method has a 
hierarchical structure [15]. Since the L2 regularizer in SVM cannot convey the hierarchical 
structure prior information. To exploit the hierarchical structure information for better 
recognition accuracy, we proposed a tree regularized classifier for human action recognition 
by substituting L2 regularizer for tree regularizer in SVM. 

However, optimizing of tree regularized classifier is challenging, since both of tree 
regularizer and hinge loss function in the proposed tree regularized classifier are 
non-differentiable. Many efforts [19-24] have studied the optimization problem of structure 
regularized penalty, which can be split into three categories: subgradient method, proximal 
method [20] and ADMM [24]. The subgradient method can be applied to arbitrary structure 
regularized penalty, but it is very slow to converge. The proximal method has more faster 
convergence rate, but it can only solve limited kinds of structure regularized penalties [20, 22]. 
The basic idea of ADMM is to partition the optimization problem into sub-problems, which 
can be applied to large scale optimization problem [24]. Besides, ADMM is more universal 
and can hand a variety of structure regularized penalties, especially for the structure 
regularizer with overlapping groups [19, 23]. All in all, although many methods have been 
proposed to solve the structure regularized penalty problems, they mainly addressed the 
optimization problems of structure regularized penalty combined with the differentiable loss 
function, such as logistic loss function. But the hinge loss function in the proposed tree 
regularized classifier is non-differentiable, in this paper, we show how to deal with the 
optimization problem of the tree regularized classifier using ADMM method [24]. 

We employ YouTube [26], Hollywood2 [25], and UCF50 [32] datasets to evaluate the 
proposed tree regularized classifier, and experimental results reveal that the tree regularized 
classifier gets better performance than SVM and other popular classifiers, and achieves 
promising recognition accuracy on the datasets. 

The main contributions of this paper can be summarized as: first, we introduce a tree 
regularized classifier to encode the hierarchical structure information in feature vector for 
human action recognition. Second, we present an optimization algorithm to learn the 
parameters of the proposed classifier, and the performance of the proposed classifier is 
evaluated on three public available datasets. 

The rest of this paper is organized as follows: we introduce the baseline method in Section 
2, including the generation of the feature vector and the learning procedure of the frequently 
used SVM. In Section 3, we first illustrate the hierarchical structure in feature vector generated 
by the baseline method, then we adopt the tree regularizer to encode the hierarchical structure 
information of feature vector, and solve the optimization problem using ADMM method. The 
proposed tree regularized classifier is evaluated in Section 4, and the conclusion is given in 
Section 5. 
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2. Baseline Method 

2.1 Local Features 
We extract dense trajectories [9] from video, and character each trajectory with the 
concatenation of four types of descriptors, i.e., trajectory shape, histogram of optical flow 
(HOF), histogram of oriented gradients (HOG) and motion boundary histogram (MBH). We 
cluster the set of descriptors extracted from videos to construct a codebook. Then we code 
each local feature using sparse coding [2], and obtain the coding coefficient for each local 
feature. 

2.2 Spatio-Temporal Pyramid 
After the coding coefficient of each local feature has been calculated by sparse coding [2], we 
employ spatio-temporal pyramid to capture the spatial and temporal configuration information 
of local features. 

Following the setup in [9], we use six types of spatio-temporal grids, which are denoted by 
1 1 1× × , 3 1 1× × , 2 2 1× × , 1 1 2× × , 3 1 2× × , 2 2 2× ×  shown in Fig. 1, where the first dimension 
corresponds to horizontal subdivision, the second dimension corresponds to vertical 
subdivision and the third dimension corresponds to temporal subdivision. Thus, the 24 regions 
have been constructed by the six grids, denoted by 1r ,…, 24r  shown in Fig. 1 ( the obscured 23r  
is not shown).  

 

1r
2r

7r 8r

9r
10r

11r

12r

21r

18r17r

16r
15r
14r

13r

24r

22r

20r19r

3r
4r

5r 6r

3 1 1× × 2 2 1× ×

1 1 2× × 3 1 2× × 2 2 2× ×

1 1 1× ×
 

Fig. 1. The six types of spatio-temporal grids 
 

After the spatio-temporal pyramid has been constructed, we calculate the feature vector of 
each region by max pooling all coding coefficients in the region, and the final feature vector of 
a video is formed by concatenating the feature vectors of all 24 regions. In this paper, we take 
the feature vector generated in this way (i.e. sparse coding combined with spatio-temporal 
pyramid) as the baseline method.  

2.3 SVM 
Generally, the above feature vector (i.e. the feature vector generated by the baseline method) is 
usually classified by SVM, since SVM has been the most common classifier in human action 
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recognition [1, 6-11]. We assume the feature vector of a video is denoted by x , and R p∈x . 
The learning problem of SVM * *T b+x ω  can be written as: 

( ) ( )* *

1
, arg min 1 ( )

n
T

i i
b i

b y b
,

λ
+

=

 = − + + Ω ∑
ω

ω ω ωx                                 (1) 

where [ ] ( )max ,0a a
+
=  is the hinge loss function, iy  is the class label for the thi  video, ω  is 

the weight vector, and b  is a bias. ( )Ω ω  is the L2 regularizer, and ( )2 2
2

1
( )

p

j
jω

=

Ω = =∑ω ω  in SVM. 

0λ >  is the regularization parameter. 
As we can see, the L2 regularizer penalizes each of the variables separately, which can only 

convey trivial prior information about the feature vector. In some cases, the variables in 
feature vector have informative relationship, and the relationship can be regarded as prior 
information for the classifier, which can boost the classification accuracy by encoding it into 
classifier through corresponding structure regularizer. More importantly, the structure 
regularizers have been applied in many areas [16-18].  

To exploit the structure regularizer for better classification accuracy, we must find the 
relationship between the variables in feature vector, i.e., the structure of feature vector.  

3. The Tree Regularized Classifier 

3.1 The Hierarchical Structure in Feature Vector 
To illustrate the hierarchical structure in feature vector generated by the baseline method, we 
review the max pooling procedure and take an example to illustrate the hierarchical structure, 
since the hierarchical structure of feature vector introduced in this paper is derived from the 
max pooling operation. 

We assume the codebook size is 3, and M  local features are extracted from a video. We 
can obtain M  coding coefficients for the M  local features after sparse coding [2]. Let these 
coding coefficients be denoted by { }1 M,...L = l l , and 3

i R∈l . We assume the feature vector of the 
video is denoted by x , which can be calculated by concatenating the feature vectors of all 24 
regions, thus 72R∈x . Meanwhile, ( (1) (2), (3))x x x,  is the feature vector of the region 1r , and 

( (4), (5), (6))x x x  is the feature vector of the region 2r , etc. They are calculated by max 
pooling of all of the coding coefficients in corresponding regions, which can be written as: 
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1

2
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...
( (70), (71), (72)) max .
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τ
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τ
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τ

⊆
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⊆

=

=

=

l

l

l
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l

l

                                     (2) 

where rτ η⊆l  denotes all coding coefficients belonging to the region rη . Besides, the first 
dimension of the feature vector for each region (e.g., (1)x , (4)x , (7)x ,…, (70)x ) is the coding 
coefficient coded on the first visual word, and the second dimension of each region (e.g., (2)x , 

(5)x , (8)x ,…, (71)x ) is the coding coefficient coded on the second visual word, etc. 
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Moreover, from the spatio-temporal pyramid shown in Fig. 1, we can observe that the 
coding coefficients in the region 1r  are the union of all the coding coefficients in the regions 

2 24~r r : 

{ } { } { } { }
1 2 3 24

...
r r r rτ τ τ τ

τ τ τ τ⊆ ⊆ ⊆ ⊆
=

 l l l l
l l l l                              (3) 

Therefore, we can obtain the relationship of the variables in feature vector x : 
(1) max( (4), (7), (10),... (70)),
(2) max( (5), (8), (11),... (71)),
(3) max( (6), (9), (12),... (72)).

x x x x x
x x x x x
x x x x x

=
=
=

                                     (4) 

The above relationship about the feature vector x  can be known as hierarchical structure 
[15] described by three trees shown in Fig. 2, which are composed of 72 nodes, and the 
numbers in the nodes are the indices for x . Concretely, the nodes belonging to the same tree 
correspond to the same visual word in codebook, and the value of root node is the maximum of 
all its children in each tree. Furthermore, the nodes painted with the same background color 
are from the same region, e.g., the root nodes (i.e., 1, 2, 3) are the feature vector generated by 
the region 1r . 

 
1

4 7 10 70

2

5 8 11 71

3

6 9 12 72

 

Fig. 2. The hierarchical structure of feature vector 
 

As we can see from the equation (4), if the value of any leaf node in Fig. 2 is non-zero, its 
parent node will be non-zero. On the contrary, if the value of any parent node is zero, all its 
leaf nodes should be zero, too. As illustrated in [2], the max pooling operator can be seen as the 
selection of the most salient feature in a region, e.g., the root node can be seen as the most 
salient feature in the whole video (i.e. the region 1r ). Therefore, we can conclude that if the 
most salient feature in a coarse region is not discriminative, all features corresponding to the 
same visual word in all finer regions which partitioned by this coarse region are not 
discriminative, either. For example, (1)x  is the most salient feature in 1r  (i.e. the whole video), 
and corresponds to the first visual word in codebook, thus, if (1)x  is not discriminative, all 
features corresponds to the first visual word in all finer regions which partitioned by 1r  (i.e. 

2 24~r r ) are not discriminative (i.e. (4), (7), (10),..., (70)x x x x ), either. 

Now we have found the hierarchical structure of feature vector, since the L2 regularizer in 
SVM cannot express the hierarchical structure, for better classification accuracy, we employ 
tree regularizer to express it, and propose the tree regularized classifier by replacing the L2 
regularizer with tree regularized in SVM. We will show how to apply the tree regularizer to 
encode the hierarchical structure illustrated above. 
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3.2 Tree Regularizer 
Formally, we assume the size of the codebook is S , as clarified above, the hierarchical 
structure of feature vector R p∈x  can be described by S  trees. We assume these trees are 
indexed by k , k =1,…, S . The number of nodes in the thk  tree is km  (all km  are equal to 
24 in this paper), the nodes in the thk  tree are indexed by j , j =1,…, mk . The tree 
regularizer [15] can be written as: 

( )
m

21 1

k

k
j

S
k
j G

k j
ε

= =

Ω =∑∑ω ω                                                    (5) 

where k
jG  is a non-empty subset of {1,..., }p , indexing the thj  node and all its children in the 

thk  tree. ( )k k
j jG i G

i
∈

=   ω ω  is a sub-vector of ω . 0k
jε >  is a regularization parameter for 

the group ( , )k j  . Similar to [15], we define k k
j jdε = , where k

jd  is the number of elements 
in the ( , )k j  group. 

For example, the tree regularizer for the example shown in Fig. 2 is: 
( ) ( )

( )
( )

2

2

2

21 (1), (4),..., (70) (4) ,..., (70)

21 (2), (5),..., (71) (5) ,..., (71)

21 (3), (6),..., (72) (6) ,..., (72)

Ω = + + +

+ + + +

+ + + +

ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

                       (6)

 

where 2
( ) ( )i i=ω ω  is the absolute value of ( )iω . The effect of the tree regularizer [15] is: a 

feature can be selected only if its parent is selected in a tree, in other words, the weight of a 
feature is non-zero only if the weight of its parent is non-zero [15]. For example, (4)ω  will be 
non-zero only if (1)ω  is non-zero. Similarly, if (1)ω  is zero, all its children 

(4), (7), (10),..., (70)x x x x  will be induced to zero. 

3.3 Optimization of The Tree Regularized Classifier 
We now turn our attention to the optimization problem of the tree regularized classifier. We 
substitute tree regularizer (5) for L2-norm regularizer (1) in SVM, and the optimization 
problem of tree regularized classifier can be written as:  

( ) ( )
m

* *

21 1 1,

, min 1
k

k
j

n S
T k

i i j G
i k jb

b y b λ
+

= = =

 = − + + ∑ ∑∑
ω

ω ω ωx                        (7) 

where k k
j jλ λε= . The main challenges of the optimization problem (7) are that not only both 

of the hinge loss function and the tree regularizer are non-differentiable, but also the groups in 
tree regularizer are overlapping  [15,16].  

We first introduce an auxiliary variable v  to transform the optimization problem (7) with 
overlapping groups into the following equivalent problem: 
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x v

v =
                                (8) 
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where 1 1 2
1 m 1 m1

T

,..., , ,..., RS
S

t
G G G G

  ∈  
ϕ ω ω ω ω= , 1 1 2

1 m 1 m1
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,..., , ,..., S
SD D D D

 
  

v = v v v v , and the 

cardinality of k
jD  is equal to the cardinality of k

jG , but indies v  with increasing number. We 
can see that the groups in regularizer term are no longer overlapping. 

Inspired from [19], we introduce a sparse matrix R t p×∈M , only one element is 1 in each 
row of M  (others are 0), and the element of 1 corresponds to the type of visual word of ( )iϕ , 
thus ϕ ω= M , and (8) can be equivalently written as: 

( )
m

, 21 1 1
min 1

. .

k

k
j

n S
T k

i i j Db i k j
y b

s t

λ
+

= = =

 − + + ∑ ∑∑ω
ω

ω

x v

v = M
                              (9) 

The optimization problem (9) can be solved by iterating the following parameters 
alternately.  
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where u  is the scaled dual variable [24], and 0ρ >  is a penalty parameter. We show the 
details for the update of ( ),bω  and v  in the following. 

For the update of ( ),bω  in (10), we can form an equivalently problem by introducing an 

auxiliary variable nR∈ξ . 

( )
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2( 1) ( 1) ( ) ( ) ( )
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ω
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ξ                        (11) 

The dual problem of (11) can be written as: 

( ) ( ) ( )1 1

1 1 1
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 (12) 

where nR∈α  is the Lagrange multiplier, and the matrix TM M  is diagonal and invertible, 
thus it is convenient to calculate the inverse matrix of TM M . Besides, we observe that the 
optimization problem (12) is a quadratic programming problem, thus we can solve it via 
sequential minimization optimization (SMO) [27], and the update of ω  can be written as: 
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( ) ( )1( 1) ( ) ( )
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yα ρ
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Whereas the update for b  can be written as: 

( )( )
*

( 1)

( 1)
*

Tt
i

t i

y
b

+

+ ∈

−
=
∑

S

ω
S

x
                                            (14) 

where { }* *| 0 1ii α= < <S , and *S  is the cardinality of *S . 

For the update of v  in (10), we can equivalently reformulate it as: 

( ) ( ) ( ) ( )
m 2

( 1) ( ) ( 1) ( ) ( )

2 21 1
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2
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j j j j

S
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 
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v
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We solve it using block soft thresholding operator [20]: 
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where ( 1) ( )t tM += +σ ω u , ( ) kk
jj

i i DD ∈
=σσ  . ( )a

+  is the hinge loss function. When 

2
0k

jD
=σ , ( )( )

k
j

t

D
= 0v . 

For the proof property of the proposed optimization algorithm, we can derive it from the 
convergence theory of ADMM [24] easily. 

4. Experiments 

4.1 Experimental Setup 
We employ three popular human action datasets to evaluate the proposed baseline method and 
the tree regularized classifier, i.e. YouTube [26], Hollywood2 [25], and UCF50 [32]. 

The purposes of the experiments are to validate whether the baseline method illustrated in 
Section 2 can improve the performance of the traditional BOVW and the Fisher kernel method 
[5], whether the proposed tree regularized classifier can boost the recognition accuracy further, 
and whether the proposed tree regularized classifier outperforms other classifiers. 

Therefore, we conduct three parts of experiments: we first evaluate the performance of 
baseline method and the proposed tree regularized classifier on the three datasets, which is 
shown in Section 4.2, Section 4.3, and Section 4.4, respectively. Then we compare the 
proposed tree regularized classifier with other classifiers, which is presented in Section 4.5. 
Finally, we compare the recognition accuracy obtained by the proposed method with the state 
of the art methods, which is shown in Section 4.6. 

In all of the experiments, as mentioned in Section 2, we extract dense trajectories [9] from 
video, and character each trajectory with the concatenation of four types of descriptors, i.e., 
trajectory shape, HOF, HOG, and MBH. We construct the codebook using K-means clustering 
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method, and the parameters for sparse coding in the baseline method are the same as in [1]. 
With regard to the fisher kernel method, we generate the fisher vector as the same fashion 
illustrated in [5]. In regard to the implementation of SVM, we use linear SVM implemented by 
LIBSVM [28]. Specifically, we train the classifier using the one-vs.-rest strategy for the 
multiclass classification. 

Regarding the optimization parameters of the proposed tree regularized classifier, the best 
regularization parameter λ  and the best penalty parameters ρ  are selected from 
{ }14 13 82 , 2 ,..., 2− −  by cross validation. 

 

4.2 Evaluation of Recognition Accuracy on YouTube Dataset 
The YouTube [26] dataset includes 11 actions, and has 1168 video clips in total. Recognizing 
the human actions of the video clips in YouTube dataset is very challenging, since these video 
clips are recorded under cluttered background. The example frames sampled from YouTube 
dataset are shown in Fig. 3. 
 

BikingShooting Diving Golf Swinging

Horse Riding Soccer Juggling Swinging Tennis Swinging

SpikingJumping Walking Dog

 

Fig. 3. The example frames sampled from YouTube dataset 
 
 

We generate the feature vector using three different methods (i.e., the traditional BOVW 
method, the fisher kernel method, and the baseline method illustrated in Section 2), and 
conduct the experiments with different codebook sizes, i.e., for the BOVW and baseline 
method, we evaluate the performance with the size of 1k, 2k, 4k, 6k, 8k, 10k, respectively. 
Whereas for the fisher kernel method, the number of Gaussians K is set to 256, 512, 1024, 
respectively, we then compare the performance of the proposed tree regularized with SVM. 
We use leave one out cross validation to train the classifier, i.e., 24 pre-defined groups are used 
for training and the rest one group is used for testing, as in [9], and the average accuracy over 
all classes is presented, the experimental results are shown in Table 1. 
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Table 1. Evaluation of the recognition accuracy on YouTube dataset 
Feature vector 

generation method Classifier 
Codebook size 

1k 2k 4k 6k 8k 10k 

Traditional BOVW SVM 74.5 76.9 78.8 79.6 78.1 76.5 

Fisher kernel SVM 83.6 (K=256) 85.4 (K=512) 84.9 (K=1024) 

Baseline SVM 78.1 81.3 85.3 86.1 86.4 87 

Baseline Tree regularized 
classifier 78.3 81.7 86.2 87.1 87.5 88.3 

 
As we can see from Table 1, basically, the recognition accuracy show continuous 

improvement with the increasing of the codebook size except the traditional BOVW 
generation method. Besides, the baseline method outperforms both of fisher kernel method 
and traditonal BOVW significantly, e.g., when the codebook size is set to 6000, the 
recognition accuracy achieved by traditional BOVW is 79.6%, whereas the baseline method 
obtains 86.1%, which has improved by 6.5%, and the fisher kernel method achieves 85.4% on 
the dataset, which is inferior to the performance of baseline method.The reason for the 
improvement is that the baseline method employes sparse coding to reduce the quantization 
error and the spatio-temporal pyramid to capture the informative spatio-temporal 
configuration information of local features. What is more, the tree regularized classifier has 
improved the performance of SVM, e.g., when the codebook size is set to 6000, the tree 
regularized classifier has achieved 87.1%, which has improved the performance of SVM by 
1%.  

We then evaluate performance of the tree regularized classifier with different iterations on 
YouTube dataset, the codebook size is set to 6000, the results are shown in Table 2.  

 
Table 2. Evaluation of the recognition accuracy with different iterations on YouTube dataset 

Iterations 100 200 300 400 500 600 700 

Recognition accuracy 35.2 43.2 61.2 71.8 87.1 87.2 87.2 

 
From Table 2, we notice that the recognition accuracy obtained by tree regularized 

classifier increases with the increasing of the iterations, when the iterations are higher than 500, 
the growth of the recognition accuracy becomes slowly. Therefore, to get a compromise 
between the computational time and the recognition accuracy, we implement 500 iterations for 
the train of the proposed tree regularized classifier in all the experiments, which empirically 
shows satisfactory results. 

4.3 Evaluation of Recognition Accuracy on Hollywood2 Dataset 
The video clips in Hollywood2 [25] dataset are taken from Hollywood movies, which can be 
divided into 12 action classes: driving car, eating, getting out of car, hand shaking, hugging 
person, answering phone, standing up, sitting up, sitting down, running, kissing, and fighting 
person. Besides, there are 1707 video clips in Hollywood2 dataset, which can be split into the 
training set (823 video clips) and the test set (884 video clips). The example frames sampled 
from Hollywood2 dataset are shown in Fig.4. 
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Running

Getting Out of Car

Hugging Person

Fighting Person

Diving Car

Sitting Down

Sitting Up

Eating

Answering Phone

Hand Shaking

Standing Up

Kissing

 

Fig. 4. The example frames sampled from Hollywood2 dataset 
 

With regard to the experiments evaluated on Hollywood2 dataset, we report the mean 
average precision (mAP) [25] over all action classes, the experimental results are shown in 
Table 3. 

 
Table 3. Evaluation of the recognition accuracy on Hollywood2 dataset 

Feature vector 
generation method Classifier 

Codebook size 
1k 2k 4k 6k 8k 10k 

Traditional BOVW SVM 48.1 50.8 53.2 54.1 54.9 54.6 

Fisher kernel SVM 58.5 (K=256) 60.4 (K=512) 59.7 (K=1024) 

Baseline SVM 55.2 57.3 61.5 62.8 63.9 64.6 

Baseline Tree regularized 
classifier 55.3 57.6 62.3 63.7 65 65.6 

 
From Table 3, we notice that the baseline method has achieved better performance than 

traditional BOVW and fisher kernel, and large-sized codebook always results in better 
performance. The reason for the phenomenon can be explained as: the feature used in our 
experiments is sampled from video densely, the densely sampled features can describe more 
informative information and then need a large-sized codebook to be expressed. Also, we can 
see that the tree regularized classifier has improved the performance of SVM further. For 
example, when the codebook size is set to 6000, the traditional BOVW has obtained 54.1%, 
and the baseline has achieved 62.8%, whereas the tree regularized classifier has achieved 
63.7%, which is 0.9% higher than that of SVM.  

4.4 Evaluation of Recognition Accuracy on UCF50 Dataset 
The UCF50 [32] dataset consists of realistic video clips collected from YouTube, which 
contains 50 actions, such as baseball pitch, bench press, clean and jerk, drumming, fencing, 
playing guitar, pizza tossing, etc. Similarly, the video clips belonging to the same action are 
split into 25 groups for the UCF50 dataset. Some example frames sampled from UCF50 
dataset are shown in Fig. 5. 
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Billiards ShotBench Press Clean And Jerk Drumming

Horse RaceFencing Jump Rope Kayaking

Pizza TossingMixing Playing Tabla Playing Violin  
Fig. 5. Some example frames sampled from UCF50 dataset 

 
In the experiments, we adopt leave one out cross validation for the pre-defined 25 groups, 

and the average accuracy over all classes is reported, the experimental results are presented in 
Table 4. 

Table 4. Evaluation of the recognition accuracy on UCF50 dataset 
Feature vector 

generation method Classifier 
Codebook size 

1k 2k 4k 6k 8k 10k 

Traditional BOVW SVM 69.8 72.5 74.3 75.8 76.4 77.5 

Fisher kernel SVM 84.2 (K=256) 85.7 (K=512) 85.1 (K=1024) 

Baseline SVM 77.5 83.7 85.3 86.9 87.2 88 

Baseline Tree regularized 
classifier 77.6 84.2 86.1 87.9 88.1 89.1 

 
From Table 4, as before, the baseline method has achieved better performance than 

traditional BOVW and fisher kernel method, and the tree regularized classifier outperforms 
SVM. When the size of codebook is set to 1000, 2000, 4000, 6000, 8000, 10000, respectively, 
the recognition accuracy achieved by tree regularized classifier is 0.1%, 0.5%, 0.8%, 1%, 
0.9%, 1.1% higher than SVM, respectively. 

In the above three datasets, we can observe that the baseline method obtains better 
performance than fisher kernel method, the reason for this performance is that the baseline 
method has captured informative spatial and temporal information of local features. 

Besides, The reasons for the superior performance of tree regularized classifier can be 
summarized as: on the one hand, as we can see from the feature vector generation process of 
the baseline method illustrated in Section 2, the feature vector for a video is generated by 
concatenating the feature vectors of all 24 regions, that is, the length of the feature vector is 24 
times of the size of codebook, e.g., if the size of codebook is 2000, the length of the feature 
vector generated by baseline method is 48000 (24*2000). Obviously, for this type of high 
dimensional classification problem, the weight vector of the classifier should be sparse, more 
importantly, the weight vector has a hierarchical sparsity pattern illustrated in Section 3.1. 
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Unfortunately, the SVM cannot result in sparse weight vector directly, and does not take 
advantage of the inherent structure either. However, the tree regularized classifier takes into 
account the inherent hierarchical structure of the feature vector, and outperforms SVM 
undoubtedly. On the other hand, as illustrated in Section 1, the sparsity pattern of the weight 
vector can be seen as prior information for the classifier under the Bayesian framework [14, 
15], and the improvement classification performance is benefited from the inherent prior 
information. 

4.5 Comparison with Other Classifiers 
We now compare the tree regularized classifier with other popular classifiers, including 
L1-norm regularized logistic regression based classifier (L1_LRC), L2-norm regularized 
logistic regression based classifier (L2_LRC), sparse representation based classifier (SRC) 
[39], collaborative representation based classifier (CRC) [40], random forest (RF), L1-norm 
regularized SVM (L1_SVM) [41] and SVM. The parameters in these classifiers are 
determined by cross validation. For the implementation of these classifiers, both of L1_LRC 
and L2_LRC are implemented by SPAMS package [38], the L1 regularized minimization 
problem in SRC [39] is solved by [43], and CRC is implemented by [40], RF is implemented 
by the function in Matlab, L1_SVM is implemented by LIBLINEAR [41]. We evaluate the 
recognition accuracy on the three datasets, and record the running time of implementing a 
classifier on YouTube dataset. The computer configuration in the experiments is Intel I5 3450 
and 16GB memory. We implement the experiments using Matlab2014. The comparison 
results are shown in Table 5. 
 

Table 5. Comparison with other classifiers 

Method 
Classification accuracy on datasets Running time 

on YouTube YouTube Hollywood2 UCF50 
L1_LRC 78.2 56.1 77.1 0.48s 
L2_LRC 83.9 62.3 81.9 1.12s 

SRC 81.1 60.9 82.3 108.31s 
CRC 80.2 61.3 81.6 0.19s 
RF 84.5 63.7 82.4 20.81s 

L1_SVM 79.7 58.5 79.6 0.002s 
SVM 87 64.6 88 2.24s 

Our method 88.3 65.6 89.1 29.47s 
 
From Table 5, we can see that the running time of the tree regularized classifier is not 

comparable with most of the classifiers, the reason is that the update of ω  in (13) is 
time-consuming, and the computational complexity of the proposed optimization algorithm is 
O(n^3). In the future, we will focus on the improvement of the efficiency of the optimization 
algorithm. 

4.6 Comparison With The State Of The Art Methods 
We finally compare the recognition accuracy of our method with the state of the art methods 
on the three datasets, the experimental results are shown in Table 6. 
 
 
 



1628                                                                 Luo et al.: A Tree Regularized Classifier—Exploiting Hierarchical Structure 
Information in Feature Vector for Human Action Recognition 

Table 6. Comparison of our method with the state of the art methods 

Method Year Dataset 
YouTube Hollywood2 UCF50 

Lu et al. [30] 2013 76.7 — — 
Wang et al. [9] 2013 85.4 59.9 85.6 
Wang et al. [8] 2014 82.2 56.8 — 

Beaudry et al. [34] 2016 — — 88.3 
Liu et al. [31] 2016 82.3 46.8 — 

CNN [31]  79.8 45.3 — 
DBN [31]  82.1 46.8 — 

Liu et al. [35] 2016 94.4 — 86.5 
Wang et al. [42] 2016 — — 93.8 
Kihl et al. [45] 2016 — 58.6 — 

Our method  88.3 65.6 89.1 
 
As shown in Table 6, we notice that our method has achieved better performance than 

most of the methods on the three datasets, owing that our method has captured the informative 
spatial and temporal configuration information of local features, and utilizes sparse coding to 
reduce quantization error in feature coding procedure. Moreover, the proposed tree regularized 
classifier boosts the performance further. Specifically, we list three popular deep learning 
methods [31, 35] shown in Table 6. Among them, the convolutional neural network (CNN) 
method [36] and the deep belief nets (DBN) method [37] are implemented by Liu et al. [31], 
we can see that the recognition accuracy achieved by the two methods is inferior to our method 
on YouTube and Hollywood2 datasets. Liu et al. [35] proposed the convolutional neural 
random fields and achieved the best recognition accuracy on the YouTube dataset.  

As we can see from Table 6, the recognition accuracy we obtained may be not the highest. 
However, the main contribution of the paper is that we propose the baseline method to 
overcome the deficiencies of traditional BOVW, and we develop the tree regularized classifier 
to squeeze the performance further. Since our method is independent of the features, if we 
employ more advanced features, such as the features learned by “two-stream ”deep learning 
methods [44], it is possible to obtain higher recognition accuracy on the datasets.  

5. Conclusion 
In this paper, we combine sparse coding with spatio-temporal pyramid to recognize human 
action, and regard this method as the baseline. We find that there is a hierarchical structure in 
feature vector constructed by the baseline method. We encode the hierarchical structure into 
classifier through tree regularizer, and a tree regularized classifier is formulated by 
substituting L2 regularizer for tree regularizer in SVM. Besides, we present a method to solve 
the optimization problem of the proposed tree regularized classifier. We evaluate the proposed 
tree regularized classifier on YouTube, Hollywood2, and UCF50 datasets, the experimental 
results show that the recognition accuracy of the proposed tree regularized classifier is higher 
than SVM and other popular classifiers.  

Generally, there are three research fields in human action recognition: feature extraction, 
feature representation and classification. Researchers usually focus on one of the fields in 
human action recognition, either feature extraction, or feature representation, or classification. 
To the best of our knowledge, few work address the structure information embeded in the 
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feature representation, and few work exploit the structure information to squeeze the 
classification performance. Inspired by the progress in natural language processing [13,16,17], 
we notice and take advantage of the structure information embeded in feature representation, 
and the method has been demonstrated in three action datasets. Therefore, the proposed 
method, especially the proposed tree regularized classifier gives a new insight into the 
enhancement of human action recognition accuracy, this is also the most important 
contribution of this paper. 
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