• Title/Summary/Keyword: Spatial Dose

Search Result 164, Processing Time 0.026 seconds

Dose Evaluation at The Build Up Region Using by Wedge Filter (쐐기필터 사용에 따른 선량증가 영역에서 선량평가)

  • Kim, Yon-Lae;Moon, Seong-Kong;Suh, Tae-Suk;Chung, Jin-Beom;Kim, Jin-Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.341-348
    • /
    • 2014
  • Wedge filter could use to increase the dose distribution at the hot dose regions. We evaluated dose discrepancy at surface and build region in the infield and outfield that Metal Wedge (MW) and Enhance Dynamic Wedge (EDW) were interact with photon. In this paper, we used Gafchromic EBT3 film that had excellent spatial resolution, composed the water equivalent materials and changed the optical density without development. The set up conditions of linear accelerator were fixed 6 MV photon, 100 cm SSD, $10{\times}10cm^2$ field size and were irradiated 400 cGy at Dmax. The dose distribution and absorbed dose were evaluated when we compared the open field with $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ metal wedge and enhanced dynamic wedge. A $15^{\circ}$ metal wedge could increase the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. A $30^{\circ}$ metal wedge could decrease the surface and build up region dose than using a $30^{\circ}$ enhanced dynamic wedge. A $45^{\circ}$ metal wedge could decrease by large deviation the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. The dose of penumbra region at outfield were increased on the thick side but were decreased on the thin side. It could be decrease the surface dose and build up region dose, if the metal wedge filters were properly used to make a good dose distribution and not closed the distance of surface.

Effects of Iterative Reconstruction Algorithm, Automatic Exposure Control on Image Quality, and Radiation Dose: Phantom Experiments with Coronary CT Angiography Protocols (반복적 재구성 알고리즘과 관전류 자동 노출 조정 기법의 CT 영상 화질과 선량에 미치는 영향: 관상동맥 CT 조영 영상 프로토콜 기반의 팬텀 실험)

  • Ha, Seongmin;Jung, Sunghee;Chang, Hyuk-Jae;Park, Eun-Ah;Shim, Hackjoon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, we investigated the effects of an iterative reconstruction algorithm and an automatic exposure control (AEC) technique on image quality and radiation dose through phantom experiments with coronary computed tomography (CT) angiography protocols. We scanned the AAPM CT performance phantom using 320 multi-detector-row CT. At the tube voltages of 80, 100, and 120 kVp, the scanning was repeated with two settings of the AEC technique, i.e., with the target standard deviations (SD) values of 33 (the higher tube current) and 44 (the lower tube current). The scanned projection data were reconstructed also in two ways, with the filtered back projection (FBP) and with the iterative reconstruction technique (AIDR-3D). The image quality was evaluated quantitatively with the noise standard deviation, modulation transfer function, and the contrast to noise ratio (CNR). More specifically, we analyzed the influences of selection of a tube voltage and a reconstruction algorithm on tube current modulation and consequently on radiation dose. Reduction of image noise by the iterative reconstruction algorithm compared with the FBP was revealed eminently, especially with the lower tube current protocols, i.e., it was decreased by 46% and 38%, when the AEC was established with the lower dose (the target SD=44) and the higher dose (the target SD=33), respectively. As a side effect of iterative reconstruction, the spatial resolution was decreased by a degree that could not mar the remarkable gains in terms of noise reduction. Consequently, if coronary CT angiogprahy is scanned and reconstructed using both the automatic exposure control and iterative reconstruction techniques, it is anticipated that, in comparison with a conventional acquisition method, image noise can be reduced significantly with slight decrease in spatial resolution, implying clinical advantages of radiation dose reduction, still being faithful to the ALARA principle.

A Study on Dose Assessment by 18F-FDG injected into Patients (환자에게 주입된 18F-FDG 의한 선량 평가에 대한 연구)

  • Kim, Chang-Ju;Kim, Jang-Oh;Jeong, Geun-Woo;Shin, Ji-Hey;Lee, Ji-Eun;Jeon, Chan-Hee;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.467-475
    • /
    • 2020
  • The purpose of this study is to assess doses to 18F-FDG, a radioactive drug, during PET examinations, to alleviate anxiety about radiation in patients and carers, to minimize the indiscriminate examination progress caused by medical institution personnel and space clearance problems, and health examination. The dose assessment was measured using a thermo-fluorescent dosimeter (TLD) and an electronic personal dosimeter (EPD) at the location of the cervical (hypothyroid), thorax (heart), and lower abdomen (breeding line) which are the three highest tissue areas of the radiation tissue weighting. In addition, spatial dose rates and radioactivity in urine were measured using GM counters and ion boxes. The results are as follows: First, the personal dosimeter TLD was measured 0.0425±0.0277 mSv in the cervical region, 0.0440±0.0386 mSv in the thorax and 0.0485±0.0436 mSv in the lower abdomen, with little difference in the heart dose depending on radiation sensitivity. The EPD was measured at 0.942±0.141 mSv/h immediately after the cervical position, and 0.192±0.031 mSv/h after 120 minutes. Immediately after the thorax position, 0.516±0.085 mSv/h, 120 minutes later 0.128±0.040 mSv/h. Immediately after the lower abdomen position, 0.468±0.091 mSv/h, and after 120 minutes 0.105±0.021 mSv/h were measured. The spatial dose rate at the GM counter was measured immediately at 0.041±0.005 mSv/h, 120 minutes later at 0.014±0.002 mSv/h. The radioactivity in urine using ion chamber was measured at 0.113±0.24 MBq/cc after 60 minutes and 0.063±0.13 MBq/cc after 120 minutes. As a result, 18F-FDG should be administered, dose re-evaluated two hours after the PET test is completed, and caregivers should be avoided. In addition, it is deemed necessary to provide patients and carers with sufficient explanations and expected values of exposure dose to avoid reckless testing. It is hoped that the data tested in this study will help patients and families relieve anxiety about radiation, and that the radiation workers' exposure management system and institutional improvements will contribute to the development of medical radiation.

Abosrbed Dose Measurements and Phantom Image Ecaluation at Minimum CT Dose for Pediatric SPECT/CT Scan (소아 SPECT/CT 검사를 위한 최저조건에서의 피폭선량측정 및 팬텀의 영상평가)

  • Park, Chan Rok;Choi, Jin Wook;Cho, Seong Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.82-88
    • /
    • 2014
  • Purpose: The purpose of study was to evaluate radiation dose for pediatric patients by changing tube voltage (kVp) and tube current (mA) at minimum conditions. By evaluating radiation dose, we want to provide dose reduction for pediatric patients and maintain good quality of SPECT/CT images. Materials and Methods: Discovery NM/CT 670 Scanne was used as SPECT/CT. Tube voltages are 80 and 100 kvP. Tube currents are 10, 15, 20, 25 mA. Using PMMA (Polymethyl methacrylate) Phantom, radiation dose which were calculated at center and peripheral dose and SNRD (Signal to Noise Ratio Dose) were evaluated. Using the CT performance phantom, spatial resolution was evaluated as the MTF (Modulation Transfer Function) graph. Jaszczak phantom was used for SPECT image evaluation by CNR (Contrast to Noise to Ratio). Results: Radiation dose using the PMMA phantom was higher peripheral dose than center dose about 7%. SNRD were 7.8, 8.2, 8.3, 8.8, 8.8, 9.9, 9.8, 9.6 for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. We can distinguish 35, 45, 70, 71, 52, 58, 90, 110 linepair for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA at resolution with MTF. CNR of SPECT images using CT attenuation map were 57.8, 57.7, 57.1, 56.7, 56.6, 56.7, 56.7, 56.7% for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. Conclusion: In this study, radiation dose for pediatric patients showed decreased low dose condition. And SNRD value was similar in all condition. Resolution showed higher value at 100kVp than 80kVp. for CNR, there was no significant difference. we should take additional study to prove better quality and dose reduction.

  • PDF

Estimation of Nuclear Interaction for $^{11}C$ Cancer Therapy

  • Maruyama, Koichi;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.199-201
    • /
    • 2002
  • Cancer therapy using high-energy $^{12}$ C ions is successfully under way at HIMAC, Japan. An alternative beam to $^{12}$ C is $^{11}$ C ions. The merit of $^{11}$ C over $^{12}$ C is its capability for monitoring spatial distribution of the irradiated $^{11}$ C by observing the $\beta$$^{+}$ decay with a good position resolution. One of the several problems to be solved before its use for therapy is the amount of nuclear interaction that deteriorates the dose concentration owing to the Bragg curve. Utilizing the dedicated secondary beam course for R&D studies at HIMAC, we measured the total energy loss of $^{11}$ C ions in a scintillator block that simulates the soft tissue in human bodies. In addition to the total absorption $^{11}$ C peak, non-negligible bump-shaped contribution is observed in the energy spectrum. The origin of the bump contribution can be nuclear interaction of the incident $^{11}$ C ions with hydrogen and carbon atoms. Further studies to reduce the ambiguity in dose distribution are mentioned.

  • PDF

Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image (디지털 흉부영상에서 자동노출제어 및 감도변화를 이용한 영상품질의 정량적인 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.275-283
    • /
    • 2013
  • The patient radiation dose is different depending on selection of Ion chamber when taking Chest PA which using AEC. In this paper, we studied acquiring the best diagnostic images according to selection of Ion chamber on AEC mode as well as minimizing patient radiation dose. Experimental methods were selection of Ion chamber and change of sensitivity under the same conditions as Chest PA projection. At AEC mode, two upper ion chambers sensors and one lower ion chamber sensor were divided into 7 cases according to selection of on/off. after measuring five times respectively, we obtained average value and calculated exposure dose. Image assessment was done with measured Modulation Transfer Function, Peak Signal to Noise Ratio, Root Mean Square, Signal to Noise Ratio, Contrast to Noise Ratio, Mean to Standard deviation Ratio respectively. In exposure assessment results, selection of two upper chambers was the lowest. In resolution assessment results, image of two upper chambers had the second high spatial frequency at sensitivity at 625(High) was 1.343 lp/mm. RMS value of image selecting two upper chambers was low secondly. SNR, CNR, MSR were the high value secondly. As the sensitivity was increased, radiation dose was decreased but better image could be obtained on image quality. In order to obtain the best medical images while minimizing the dose, usage of two upper ion chambers is considered to be clinically useful at sensitivity 625(High).

Evaluation of Radiation Exposure to Residents by Naturally Residing Radionuclides in the Soil of Korea (한국토양 내 천연 방사성핵종에 의한 거주민의 방사선피폭평가)

  • Kim, Jung-Hoon;Kim, Ah-Reum;Ko, Seong-Jin;Whang, Joo-Ho
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.219-224
    • /
    • 2009
  • We investigated the amounts of radiation exposure from $^{238}U$, $^{232}Th$, and $^{40}K$ which are three major radionuclides naturally residing in soil of the Korean peninsula. The experimental results showed that the concentrations of the radionuclides were 15.77$\pm$7.27, 290.05$\pm$73.92 and 750.30$\pm$165.38 Bq/kg respectively. The absorbed dose rate based on the measured concentrations was 213.76$\pm$46.37 nGy/hr, while the spatial gamma absorbed dose rate measured in the same region was 123.90$\pm$19.18 nGy/hr. The effective dose rate was 0.26 mSv/yr, which is significantly higher than the world average effective dose rate 0.07 mSv/yr provided by the UNSCEAR.

  • PDF

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Saito, Kimiaki;Mikami, Satoshi;Andoh, Masaki;Matsuda, Norihiro;Kinase, Sakae;Tsuda, Shuichi;Sato, Tetsuro;Seki, Akiyuki;Sanada, Yukihisa;Wainwright-Murakami, Haruko;Yoshimura, Kazuya;Takemiya, Hiroshi;Takahashi, Junko;Kato, Hiroaki;Onda, Yuichi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.128-148
    • /
    • 2019
  • Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.

Relationship between Mn Nodule Abundance and Other Geological Factors in the Northeastern Pacific: Application of GIS and Probability Method

  • Ko, Young-Tak;Lee, Sa-Ro;Kim, Jong-Uk;Kim, Ki-Hyune;Jung, Mee-Sook
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.149-161
    • /
    • 2006
  • The aims of this study are 1) to construct a database using geostatistics and Geographic Information System (GIS), and 2) to derive the spatial relationships between manganese nodule abundance and other geological factors such as metal grade, slope, water depth, topography, and acoustic characteristics of the sub-bottom. Using GIS, it is possible to analyze a large amount of data efficiently, and to maximize the practical application, to increase specialization, and to enhance the accuracy of the analyses. The greater the copper and nickel grade, the higher the rating. The distribution pattern of nickel grade is similar to that of copper grade. The slopes are generally less than $3^{\circ}$ except for seamounts and cliff areas. The rating shows no correlation with slope. The rating is highest for slopes between 2.5 and $3.5^{\circ}$ in block N1 and between 4.0 and $4.5^{\circ}$ in block N3. The topography is classified into five groups: seamount, hill crest, hill slant, hill base or plain, and seafloor basin or valley. The rating proves lowest for seamount and hill crest. Our results show that the rating increases with the water depth in the study area. Nodule abundance dose not show any significant relationship with the thickness of the upper transparent layer in the study area.

A Study on the Material Decomposition of Dual-Energy Iodine Image by Using the Multilayer X-ray Detector (다층구조 엑스선 검출기를 이용한 이중에너지 조영제 영상의 물질 구분에 관한 연구)

  • Kim, Jun-Woo
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.465-471
    • /
    • 2021
  • Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.