Browse > Article
http://dx.doi.org/10.17946/JRST.2021.44.5.465

A Study on the Material Decomposition of Dual-Energy Iodine Image by Using the Multilayer X-ray Detector  

Kim, Jun-Woo (Advanced Process Development Team, Strategy & Innovation Division, Doosan Heavy Industries and Construction Co., Ltd.)
Publication Information
Journal of radiological science and technology / v.44, no.5, 2021 , pp. 465-471 More about this Journal
Abstract
Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.
Keywords
Angiography; Material Decomposition; Multilayer Detector; Single-Shot Dual-Energy; Contrast; Noise; Spatial Resolution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Molloi SY, Mistretta CA. Quantification techniques for dual-energy cardiac imaging. Med Phys. 1989; 16(2):209-17.   DOI
2 Park HS, Lim CH, Kang BS, et al. A study on the evaluation of patient dose in interventional radiology. Journal of Radiological Science and Technology. 2012;35(4):299-308.
3 Lee SY, Lim HS, Han MS. The evaluation of patients Radiation dose during TACE of interventional Radiology. Journal of Radiological Science and Technology. 2011;34(3):209-14.
4 Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical Note: Spektr 3.0-A computational tool for x-ray spectrum. Med Phys. 2013;43(8):4711-7.   DOI
5 Richard S, Siewerdsen JH. Cascaded systems analysis of boise reduction algorithms in dual-energy imaging. Med Phys. 2008;35(2):586-601.   DOI
6 Kim J, Kim DW, Kim SH, Yun S, Youn H, Jeon H, Kim HK. Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector. Journal of Instrumentation. 2017;12(1):C01029.   DOI
7 Gonzalez RC, Woods RE. Digital Image Processing. Prentice-Hall Inc.; 2002.
8 Kruger RA, Riederer SJ, Mistretta CA. Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys. 1977;4(3):244-9.   DOI
9 Levin DC, Schapiro RM, Boxt LM, Dunham L, Harrington DP, Ergun DL. Digital subtraction angiography: Principles and pitfalls of image improvement techniques. American Journal of Roentgenology. 1984;143(3):447-54.   DOI
10 Kim J, Kim DW, Kam S, Park J, Shon CS, Heo SK, Kim HK. Development of a large-area multilayer detector for single-shot dual-energy imaging. Journal of Instrumentation. 2018;13(12):C12018.   DOI
11 Meijering EH, Zuiderveld KJ, Viergever MA. Image registration for digital subtraction angiography. Int J Comput Vision. 1999;31(2):227-46.   DOI
12 Mistretta CA, Ort MG, Kelcz F, Cameron JR, Siedband MP, Kelcz AB. Absorption edge fluoroscopy using quasi-monoenergetic x-ray beams. Invest Radiol. 1973;8(6):402-12.   DOI
13 Kelcz F, Mistretta CA. Absorption-edge fluoroscopy using a three spectrum technique. Med. Phys. 1976;3(3):159-68.   DOI
14 Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol. 1976;21(5):733-44.   DOI
15 Riederer SJ, Mistretta CA. Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys. 1977;4(6):474-81.   DOI
16 Houk TL, Kruger RA, Mistretta CA, Riederer SJ, Shaw CG, Lancaster JC, Flemming DC. Real-time digital K-edge subtraction fluoroscopy. Invest Radiol. 1979;14(4):270-8.   DOI
17 McCollough CH, Van Lysel MS, Peppler WW, Mistretta CA. A correlated noise reduction algorithm for dual-energy digital subtraction angiography. Med Phys. 1989;16(6):873-80.   DOI
18 Molloi SY, Weber DM, Peppler WW, Folts JD, Mistretta CA. Quantitative dual-energy coronary arteriography. Invest Radiol. 1990;25(8):908-14.   DOI
19 Van Lysel MS, Miller WP, Senior DG, Gupta VK, Ende DJ, Albright DJ. Left ventricular dual-energy digital subtraction angiography: A motion immune digital subtraction technique. Int J Card Imaging. 1991;7(1):55-65.   DOI
20 Van Lysel MS. Optimization of beam parameters for dual-energy digital subtraction angiography. Med Phys. 1994;21(2):219-26.   DOI
21 Guthaner DF, Brody WR, Lewis BD, Keyes GS, Belanger BF. Clinical application of hybrid subtraction digital angiography: Preliminary results. Cardiovas Intervention Radiol. 1983;6(4):290-4.   DOI