• Title/Summary/Keyword: Spatial Analysis Method

Search Result 2,451, Processing Time 0.035 seconds

An Analysis on Locational Characteristics of Amenity/Disamenity Elements in Rural Villages by the Space Syntax Method (Space Syntax를 이용한 농촌어메니티 강화 및 저해요소의 입지 특성 분석)

  • Lim, Chang-Su;Choi, Soo-Myung;Go, Young-Bae;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • This study tried to establish a renewal guideline for rural villages through the analysis on locational characteristics of amenity/disamenity elements. Space Syntax Method was applied to analyze the locational characteristics of amenity/disamenity elements in qualitative terms. The study was carried out by 5 steps: Selection of amenity/disamenity classification table and case study villages(used same ones as in the previous study) ${\rightarrow}$ Drawing of base-map for spatial analysis ${\rightarrow}$ Preparation of final study-map after field survey ${\rightarrow}$ Spatial analysis using the Space Syntax Method ${\rightarrow}$ Proposing of a rural village renewal guideline. Through the application study to the case study villages, it was ascertained that the renewal guideline proposed in this study would well help reflect spatial characteristics of amenity/disamenity elements in plan-making works of rural villages.

Analytic Solution to the Spatial Propagation of the Flexible Structures (유연한 구조물의 공간전파에 관한 해석적 해법)

  • Seok, Jin-Yeong;Jeong, Eun-Tae;Kim, Yu-Dan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2040-2047
    • /
    • 2001
  • In this paper, a singularity problem of the state transition matrix is investigated in the spatial propagation when the spatial matrix differential equation is constructed via time finite element analysis. A parametric study shows that the degree of singularity of the state transition matrix depends on the degree of flexibility of the structures. As an alternative to avoid the numerical problems due to the singularity, an analytic solution fur spatial propagation of the flexible structures is proposed. In the proposed method, the spatial properties of the structure are analytically expressed by a combination of transcendental functions. The analytic solution serves fast and accurate results by eliminating the possibility of the error accumulation caused by the boundary condition. Several numerical examples are shown to validate the effectiveness of the proposed methods.

Detection of Hotspots for Geospatial Lattice Data

  • Moon, Sung-Ho;Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. The main purpose of this paper is to detect hotspots for the region with significantly high or low rates. Kulldorff(1997) detected hotspots based on circular spatial scan statistics. We propose a new method to find any shapes of hotspots by use of echelon analysis with spatial scan statistics.

  • PDF

Temporal and Spatial Variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function Analysis

  • Yoon, Hong-Joo;Byun, Hye-Kyung;Park , Kwang-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.213-219
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal ronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. In the application of EOF analysis for SST, the variance of the 1st mode was 97.6%. Temporal components showed annual variations, and spatial components showed that where it is closer to continents, the SST variations are higher. Temporal components of the 2nd mode presented higher values of 1993, 94 and 95 than those of other years. Although these phenomena were not remarkable, they could be considered ELNI . NO effects to the Korean seas as the time was when ELNI . NO occurred. The Sobel Edge Detection Method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and the Tidal Front (TDF) in the West Sea. TF generally occurred over steep bathymetry slopes, and spatial components of the 1st mode in SST were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations of the TF. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

Estimation of Design Wind Speed for Building Using Spatial Information Analysis (공간정보 분석을 통한 건축물의 설계풍속 산정)

  • Lee, Seong-Yun;Jo, Hyun-Jae;Lee, Hyun-Ki;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.79-89
    • /
    • 2015
  • Once the building is higher than certain size, the wind effect plays very important role in structure design. Moreover, this is more important in Korea because dangerous phenomena like typhoons are common. Rational wind resistant design is being magnified considering the global flow and climate changes. This research presented the estimation method of design wind load using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. The wind velocity pressure exposure coefficient and topographic coefficient turned out to be more quantitative and rational when calculated through the proposed method. The time and cost are comparatively low when compared with traditional method which contribute to the economic and rational wind resistant design.

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

Buckling Analysis of the Large Span Spatial Structures by Modal Analysis (Modal Analysis법에 의한 무주대공간 구조물의 좌굴해석)

  • 한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.195-201
    • /
    • 1996
  • This paper is mainly forcused on the application of modal analysis In analyze the geometrically non-linear buckling behaviors of large span spatial structures, and the evaluation of each eigen mode affected post-buckling behaviors and buckling loads. Modal analysis is applied . to derivation of the system matrices transforming actual displacement space into generalized coordinates space represented by coefficients multiplied in the linear combination of eigen modes which are independent and orthogonal each other. By using modal analysis method, it will be expected to save the calculating time by computer extremely. For example, we can obtain the satisfactorily good results by using about 7% of total eigen modes only in case of single layer latticed dome. And we can decrease the possibility of divergence on the bifurcation point in the calculation of post-buckling path. Arc-length method and Newton-Raphson iteration method are used to calculate the nonlinear equilibrium path.

  • PDF

Spatial Aggregations for Spatial Analysis in a Spatial Data Warehouse (공간 데이터 웨어하우스에서 공간 분석을 위한 공간 집계연산)

  • You, Byeong-Seob;Kim, Gyoung-Bae;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2007
  • A spatial data warehouse is a system to support decision making using a spatial data cube. A spatial data cube is composed of a dimension table and a fact table. For decision support using this spatial data cube, the concept hierarchy of spatial dimension and the summarized information of spatial fact should be provided. In the previous researches, however, spatial summarized information is deficient. In this paper, the spatial aggregation for spatial summarized information in a spatial data warehouse is proposed. The proposed spatial aggregation is separated of both the numerical aggregation and the object aggregation. The numerical aggregation is the operation to return a numerical data as a result of spatial analysis and the object aggregation returns the result represented to object. We provide the extended struct of spatial data for spatial aggregation and so our proposed method is efficient.

  • PDF

Representing Topological Relationships for 3-Dimensional Spatial Features

  • Lee, Seong-Ho;Kim, Kyong-Ho;Kim, Sung-Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.128-132
    • /
    • 2002
  • One of the fundamental components important to the analysis of spatial objects is to represent topological relationships between spatial features. Users of geographic information systems retrieve a lot of objects from spatial database and analyze their condition by means of topological relationships. The existing methods that represent these relationships have the disadvantage that they have limited information in $R^2$. In this paper, we represent and define the topological relationships between 3-dimensional spatial objects using the several representing methods of 2-dimensional features. We use the diverse representing methods, which include the 4-, 9-intersection, dimension extended and calculus-based method. Furthermore, we discuss OGC's topological relationships and operators for 3-dimensional spatial data.

  • PDF

The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building (3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구)

  • Choi, Sung-Pil;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.