• Title/Summary/Keyword: Sparse signal

Search Result 124, Processing Time 0.023 seconds

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices

  • Ding, Xiucai;Chen, Xianyi;Zou, Mengling;Zhang, Guangxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2634-2648
    • /
    • 2020
  • In this paper, an adaptive sparse singular value decomposition (ASSVD) algorithm is proposed to estimate the signal matrix when only one data matrix is observed and there is high dimensional white noise, in which we assume that the signal matrix is low-rank and has sparse singular vectors, i.e. it is a simultaneously low-rank and sparse matrix. It is a structured matrix since the non-zero entries are confined on some small blocks. The proposed algorithm estimates the singular values and vectors separable by exploring the structure of singular vectors, in which the recent developments in Random Matrix Theory known as anisotropic Marchenko-Pastur law are used. And then we prove that when the signal is strong in the sense that the signal to noise ratio is above some threshold, our estimator is consistent and outperforms over many state-of-the-art algorithms. Moreover, our estimator is adaptive to the data set and does not require the variance of the noise to be known or estimated. Numerical simulations indicate that ASSVD still works well when the signal matrix is not very sparse.

Sparse Signal Recovery with Pruning-based Tree search

  • Kim, Jinhong;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.51-53
    • /
    • 2015
  • In this paper, we propose an efficient sparse signal recovery algorithm referred to as the matching pursuit with a tree pruning (TMP). Two key ingredients of TMP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our analysis, we show that the sparse signal is accurately reconstructed when the sensing matrix satisfies the restricted isometry property. In our simulations, we confirm that TMP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit and Its Performances (병렬OMP 기법을 통한 성긴신호 복원과 그 성능)

  • Park, Jeonghong;Jung, Bang Chul;Kim, Jong Min;Ban, Tae Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1784-1789
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the orthogonal matching pursuit (OMP) which has been widely used as a greedy algorithm for sparse signal recovery. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the firest iteration, (2) the conventional OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP outperforms than the existing sparse signal recovery algorithms in terms of exact recovery ratio (ERR) for sparse pattern and mean-squared error (MSE) between the estimated signal and the original signal.

Sparse Kernel Independent Component Analysis for Blind Source Separation

  • Khan, Asif;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.121-125
    • /
    • 2008
  • We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).

Super-resolution Time Delay Estimation Algorithm using Sparse Signal Reconstruction Techniques (희박신호 기법을 이용한 초 분해능 지연시간 추정 알고리즘)

  • Park, Hyung-Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.12-19
    • /
    • 2017
  • In this paper a super-resolution time delay estimation algorithm that estimates the time delays of spread spectrum signals using sparse signal reconstruction approach is introduced. So far, the correlation method has been mostly used to estimate the time delays of spread spectrum signals. However it fails to accurately estimate the time delays in the case where the signals are spaced within approximately 1 PN chip duration and a further processing should be applied to the correlation outputs in order to enhance the resolution capability. Recently sparse signal approaches attract much interest in the area of directions-of-arrival estimation, of which SPICE is the most representative. Thus we introduce a super-resolution time delay estimation algorithm based on the SPICE approach and compare its performance with that of MUSIC algorithm by applying them to the ISO/IEC 24730-2.1 RTLS system.

Performance evaluation of estimation methods based on analysis of mean square error bounds for the sparse channel (Sparse 채널에서 최소평균오차 경계값 분석을 통한 채널 추정 기법의 성능 비교)

  • Kim, Hyeon-Su;Kim, Jae-Young;Park, Gun-Woo;Choi, Young-Kwan;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In this paper, we evaluate and analyze representative estimation methods for the sparse channel. In order to evaluate error performance of matching pursuit(MP) and minimum mean square error(MMSE) algorithm, lower bound of MMSE is determined by Cramer-Rao bound and compared with upper bound of MP. Based on analysis of those bounds, mean square error of MP which is effective in the estimation of sparse channel can be larger than that of MMSE according to the number of estimated tap and signal-to-noise ratio. Simulation results show that the performances of both algorithm are reversed on the sparse channel with Rayleigh fading according to signal-to-noise ratio.

Generalized Orthogonal Matching Pursuit (일반화된 직교 매칭 퍼슛 알고리듬)

  • Kwon, Seok-Beop;Shim, Byong-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.122-129
    • /
    • 2012
  • As a greedy algorithm reconstructing the sparse signal from underdetermined system, orthogonal matching pursuit (OMP) algorithm has received much attention in recent years. In this paper, we present an extension of OMP for pursuing efficiency of the index selection. Our approach, referred to as generalized OMP (gOMP), is literally a generalization of the OMP in the sense that multiple (N) columns are identified per step. Using the restricted isometry property (RIP), we derive the condition for gOMP to recover the sparse signal exactly. The gOMP guarantees to reconstruct sparse signal when the sensing matrix satisfies the RIP constant ${\delta}_{NK}$ < $\frac{\sqrt{N}}{\sqrt{K}+2\sqrt{N}}$. In addition, we show recovery performance and the reduced number of iteration required to recover the sparse signal.

Sparse Signal Recovery Using A Tree Search (트리검색 기법을 이용한 희소신호 복원기법)

  • Lee, Jaeseok;Shim, Byonghyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.756-763
    • /
    • 2014
  • In this paper, we introduce a new sparse signal recovery algorithm referred to as the matching pursuit with greedy tree search (GTMP). The tree search in our proposed method is implemented to minimize the cost function to improve the recovery performance of sparse signals. In addition, a pruning strategy is employed to each node of the tree for efficient implementation. In our performance guarantee analysis, we provide the condition that ensures the exact identification of the nonzero locations. Through empirical simulations, we show that GTMP is effective for sparse signal reconstruction and outperforms conventional sparse recovery algorithms.

Block Sparse Signals Recovery via Block Backtracking-Based Matching Pursuit Method

  • Qi, Rui;Zhang, Yujie;Li, Hongwei
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.360-369
    • /
    • 2017
  • In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP algorithm occupies certain superiority in terms of probability of exact reconstruction and running time.