• Title/Summary/Keyword: Sparse decomposition

Search Result 48, Processing Time 0.027 seconds

OPTIMAL REACTIVE POWER AND VOLTAGE CONTROL USING A NEW MATRIX DECOMPOSITION METHOD (새로운 행렬 분할법을 이용한 최적 무효전력/전압 제어)

  • Park, Young-Moon;Kim, Doo-Hyun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.202-206
    • /
    • 1989
  • A new algorithm is suggested to solve the optimal reactive power control(optimal VAR control) problem. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables- the transformer tap positions, generator terminal voltages and switchable reactive power sources. The method developed herein employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, Load flow module for computational error adjustments. In particular, the acceleration factor technique is introduced to enhance the convergence property in Q-module, The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to the sample system and other worst-case system demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

A Hill-Sliding Strategy for Initialization of Gaussian Clusters in the Multidimensional Space

  • Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.5-27
    • /
    • 1985
  • A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.

A review on robust principal component analysis (강건 주성분분석에 대한 요약)

  • Lee, Eunju;Park, Mingyu;Kim, Choongrak
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Principal component analysis (PCA) is the most widely used technique in dimension reduction, however, it is very sensitive to outliers. A robust version of PCA, called robust PCA, was suggested by two seminal papers by Candès et al. (2011) and Chandrasekaran et al. (2011). The robust PCA is an essential tool in the artificial intelligence such as background detection, face recognition, ranking, and collaborative filtering. Also, the robust PCA receives a lot of attention in statistics in addition to computer science. In this paper, we introduce recent algorithms for the robust PCA and give some illustrative examples.

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

Research on Camouflaged Encryption Scheme Based on Hadamard Matrix and Ghost Imaging Algorithm

  • Leihong, Zhang;Yang, Wang;Hualong, Ye;Runchu, Xu;Dawei, Zhang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.686-698
    • /
    • 2021
  • A camouflaged encryption scheme based on Hadamard matrix and ghost imaging is proposed. In the process of the encryption, an orthogonal matrix is used as the projection pattern of ghost imaging to improve the definition of the reconstructed images. The ciphertext of the secret image is constrained to the camouflaged image. The key of the camouflaged image is obtained by the method of sparse decomposition by principal component orthogonal basis and the constrained ciphertext. The information of the secret image is hidden into the information of the camouflaged image which can improve the security of the system. In the decryption process, the authorized user needs to extract the key of the secret image according to the obtained random sequences. The real encrypted information can be obtained. Otherwise, the obtained image is the camouflaged image. In order to verify the feasibility, security and robustness of the encryption system, binary images and gray-scale images are selected for simulation and experiment. The results show that the proposed encryption system simplifies the calculation process, and also improves the definition of the reconstructed images and the security of the encryption system.

Hydrothermal Coating of Hydroxyapatite on ZrO2 Ceramics

  • Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.463-468
    • /
    • 2006
  • Hydrothermal deposition of hydroxyapatite coatings on two types of $ZrO_2$ substrates (3 mol% $Y_2O_3$-doped and 13 mol% $CeO_2$-doped tetragonal $ZrO_2s$) was studied using aqueous solutions of $Ca(NO_3)_2\;4H_2O$ and $(NH_4)_2HPO_4$ containing EDTA (ethylene diamine tetra acetic acid) disodium salt as a chelating agent for $Ca^{2+}$ ions. For the precipitation of the coatings, the $EDTA-Ca^{2+}$ chelates were decomposed by oxidation with $H_2O_2$ at $90^{\circ}C$. The deposition behavior, morphology, and orientation of the coatings were investigated while varying the solution pH using scanning electron microscopy and X-ray diffractometry. For the two sub-strates, sparse deposition of the coating was obtained at pH 5.5, whereas a uniform deposition was obtained at pH 7.1, 9.8, and 11.4 with a denser microstructure for the higher pH. The coating consisted of thin needle-like or plate-like crystals ($1-2{\mu}m$ length or diameter) at pH 7.1, but fine rod-like crystals ($1-2{\mu}m$ length, $0.1{\mu}m$ diameter) at pH 9.8 and 11.4. The coatings were $1-3{\mu}m$ thick and showed a preferred orientation of the hydroxyapatite crystals with their c axis (i.e., the elongated direction) perpendicular to the substrate surface especially for pH 9.8 and 11.4.

Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method (Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발)

  • Cho, Haeseong;Joo, HyunShig;Lee, Younghun;Gwak, Min-cheol;Shin, SangJoon;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.775-780
    • /
    • 2016
  • In this paper, a computational algorithm of an improved and versatile structural analysis applicable for large-size flexible nonlinear structures is developed. In more detail, nonlinear finite element based on the co-rotational (CR) framework is developed. Then, a finite element tearing and interconnecting method using local Lagrange multipliers (FETI-local) is combined with the nonlinear CR finite element. The resulting computational algorithm is presented and applied for nonlinear static analyses, i.e., cantilevered beam and multibody structure. Finally, the proposed analysis is evaluated with regard to its parallel computation performance, and it is compared with those obtained by serial computation using the sparse matrix linear solver, PARDISO.

Parallel solution of linear systems on the CRAY-2 using multi/micro tasking library (CRAY-2에서 멀티/마이크로 태스킹 라이브러리를 이용한 선형시스템의 병렬해법)

  • Ma, Sang-Back
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2711-2720
    • /
    • 1997
  • Multitasking and microtasking on the CRAY machine provides still another way to improve computational power. Since CRAY-2 has 4 processors we can achieve speedup up to 4 properly designed algorithms. In this paper we present two parallelizations of linear system solution in the CRAY-2 with multitasking and microtasking library. One is the LU decomposition on the dense matrices and the other is the iterative solution of large sparse linear systems with the preconditioner proposed by Radicati di Brozolo. In the first case we realized a speedup of 1.3 with 2 processors for a matrix of dimension 600 with the multitasking and in the second case a speedup of around 3 with 4 processors for a matrix of dimension 600 with the multitasking and in the second case a speedup of around 3 with 4 processors for a matrix of dimension 8192 with the microtasking. In the first case the speedup is limited because of the nonuniform vector lenghts. In the second case the ILU(0) preconditioner with Radicati's technique seem to realize a reasonable high speedup with 4 processors.

  • PDF