• Title/Summary/Keyword: Spark-plasma Sintering

Search Result 425, Processing Time 0.026 seconds

The Effect of La-silicon Oxynitride on the Densification of ${Si_3}{N_4}$ Ceramics by Spark Plasma Sintering

  • Cho, Kyeong-Sik;Kim, Sungjin;Beak, Sung-Ho;Park, Heon-Jin;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.687-692
    • /
    • 2001
  • Silicon nitride-La-silicon oxynitride ceramics were fabricated by Spark Plasma Sintering (SPS). The density, crystalline phase and microstructure were compared with those obtained by Hot Pressing (HP). The full density was achieved within 40 min by spark plasma sintering at 1$650^{\circ}C$, whereas the same result was required by hot pressing with a dwell time of 500 min at higher temperature. There were some differences in the microstructure and second phases in the sintered ceramics, which are attributed to the rapid densification in the spark plasma sintering. The fine and acicular grain microstructure appeared in spark plasma sintering.

  • PDF

Nanostructure Ceramics of Silicon Nitride Produced by Spark Plasma Sintering

  • Hojo, Junichi;Hotta, Mikinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.323-324
    • /
    • 2006
  • The nanostructure control of $Si_3N_4$ ceramics can be achieved by using fine starting powder and retardation of grain growth. The spark plasma sintering technique is useful to retard the grain growth by rapid heating. In the present work, the change of microstructure was investigated with emphasis on the particle size of starting powder, the amount of sintering additive and the heating schedule. The rapid heating by spark plasma sintering gave the fine microstructure consisting of equiaxed grains with the same size as starting particles. The spark plasma sintering of $Si_3N_4$ fine powder was effective to control the microstrucutre on nano-meter level.

  • PDF

Magnetic Properties and Sintering Behavior of (Nd,Dy)-Fe-B Permanent Magnet by Spark Plasma Sintering (방전 플라즈마 소결을 이용한 (Nd,Dy)-Fe-B 영구자석의 자성 특성 및 소결 거동)

  • Song, Sun-Yong;Kim, Jin-Woo;Kim, Se-Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • Magnetic properties and the microstructures of magnets prepared by spark plasma sintering were investigated in order to enhance magnetic properties by grain size control. Nd-Fe-B magnets were fabricated by the spark plasma sintering under 30 MPa at various temperatures. The grain size was effectively controlled by the spark plasma sintering and it was possible to make Nd-Fe-B magnets with grain size of 5.9 ${\mu}m$.

Computer aided simulation of spark plasma sintering process (Part 1 : formulation) (스파크 플라즈마 소결공정의 전산모사(1부 : 수식화))

  • Keum Y.T.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • Spark plasma sintering processes have been rapidly introduced recently to improve the quality and productivity of ceramic products and to solve the problem of environmental pollutions. Sintering temperatures and pressing pressures in the spark plasma sintering process are known to be the important factors highly affecting the quality of the ceramics. In this research, in order to see the effects of sintering temperatures and pressing pressures on the grain growth during the spark plasma sintering process of $Al_2O_3$ the grain growth processes associated with sintering temperatures and pressing pressures are simulated by the Monte Carlo method (MCM) and the finite element method (FEM). In this Part 1, the formulations for the simulation, which is the theoretical background of Part 2, are introduced.

Development of $Al_2O_3-Ni$ FGMs Produced by Spark Plasma Sintering

  • Casari, Francesco;Zadra, Mario;Girardini, Luca;Molinari, Alberto
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.87-88
    • /
    • 2006
  • Ceramic-Metal Functionally Graded Materials (FGM) are of great interest for application as Thermal Barrier Coating (TBC) or Wear Resistant Coating (WRC). Spark Plasma Sintering (SPS) is a promising techniques for time-saving consolidation of laminated/graduated powder systems: SPS is a pressure-assisted electrical sintering method which directly applies a pulsed DC current as heat source. In the present work, production of $Al_2O_3-Ni$ FGMs by means of Spark Plasma Sintering is considered; effect of sintering condition on density, hardness and fracture toughness is studied. Problems correlated to this new processing technology are discussed.

  • PDF

Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering (Spark plasma sintering에 의한 Ti-6Al-4V 합금분말의 성형성)

  • Kim, J.H.;Lee, J.K.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.32-37
    • /
    • 2007
  • Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and $900^{\circ}C$, respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.

Pressureless Sintering and Spark-Plasma Sintering of Fe-TiC Composite Powders (Fe-TiC 복합재료 분말의 상압소결과 방전플라즈마소결)

  • Lee, B.H.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at $1300^{\circ}C$ for 3h. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.

Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property (W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성)

  • Oh, Gyu-Sang;Lee, Sung-Min;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

Consolidation Behavior of Gas Atomized Mg-Zn-Y Alloy Powders by Spark Plasma Sintering (Spark Plasma Sintering에 의한 가스분무 Mg-Zn-Y 합금분말의 성형특성)

  • Lee, Jin-Kyu;Kim, Taek-Soo;Bae, Jung-Chan
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.140-144
    • /
    • 2007
  • Using Spark Plasma Sintering process (SPS), consolidation behavior of gas atomized $Mg_{97}Zn_1Y_2$ alloys were investigated via examining the microstructure and evaluating the mechanical properties. In the atomized ahoy powders, fine $Mg_{12}YZn$ particles were homogeneously distributed in the ${\alpha}-Mg$ matrix. The phase distribution was maintained even after SPS at 723 K, although $Mg_{24}Y_5$ particles were newly precipitated by consolidating at 748 K. The density of the consolidated bulk Mg-Zn-Y alloy was $1.86g/cm^3$. The ultimate tensile strength (UTS) and elongation were varied with the consolidation temperature.

Spark Plasma Sintering Technique and Application for All-Solid-State Batteries (전고상 전지를 위한 스파크 플라스마 소결 기술과 응용)

  • Lee, Seokhee
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.170-181
    • /
    • 2019
  • All-solid-state batteries have received increasing attention because of their high safety aspect and high energy and power densities. However, the inferior solid-solid interfaces between solid electrolyte and active materials in electrode, which cause high interfacial resistance, reduce ion and electron transfer rate and limit battery performance. Recently, spark plasma sintering is emerging as a promising technique for fabricating solid electrolytes and composite-electrodes. Herein, this paper focuses on the overview of spark plasma sintering to fabricate solid electrolytes and composite-electrodes for all-solid-state batteries. In the end, future opportunities and challenges associated with SPS technique for all-solid-state batteries are described.