• 제목/요약/키워드: Spark timing

검색결과 169건 처리시간 0.029초

LIVC 적용 밀러사이클 스파크점화기관의 유동특성 연구 (A Study on Flow Characteristics of Spark-Ignited Engine with Variable Intake Valve Closing Timing for Miller Cycle)

  • 정진호;강선제;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.7-12
    • /
    • 2016
  • In this study, to research in-cylinder flow characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle. 3D simulation study were used 6 different intake valve profile with $CAD10^{\circ}$ gap for retard intake valve closing timing. Comparison of In-cylinder flow pattern characteristic were accompanied between Base and LIVC. And the efficiency of volume and the work of compression were analyzed with simulation study. When intake valve closing angle was retarded in $CAD50^{\circ}$, the pressure in cylinder was decreased about 12~13 bar and volume efficiency was reduced about 16%. The efficiency of volume and the work of compression were reduced on LIVC.

스파크 점화 기관의 노크 모델에 관한 연구 (A study on knock model in spark ignition engine)

  • 장종관;이종태;이성열
    • 오토저널
    • /
    • 제14권5호
    • /
    • pp.30-40
    • /
    • 1992
  • Spark knock obstructs any improvement in the efficiency and performance of an engine. As the knock mechanism of spark ignition engine, the detonation and the autoignition theory have been offered. In this paper, the knock model was established, which was able to predict the onset of knock and knock timing of spark ignition engine by the basis of autoignition theory. This model was a function of engine speed and equivalent air-fuel ratio. When this established knock model was tested from 1000rpm to 3000rpm of engine speed data, maximum error was crank angle 2 degrees between measured and predicted knock time. And the main results were as follows by the experimental analysis of spark knock in spark ignition engine. 1) Knock frequency was increased as engine speed increased. 2) Knock amplitude was increased as mass of end gas increased. 3) Knock frequency was occured above minimum 18% mass fraction of end gas.

  • PDF

차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구 (A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode)

  • 최윤준;송해박;이종화;조한승;조남효
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

예연소실 점화플러그의 화염가시화와 화염전파특성 (Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber)

  • 지명석;정인태
    • 한국가시화정보학회지
    • /
    • 제14권3호
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.

가솔린 직분사 엔진에서 운전 조건에 따른 공기 유동 특성에 의한 분무 거동 및 점화 채널에 관한 연구 (Study on Behavior of Spray and Spark Channel by Air Flow Characteristics According to Operating Conditions in Gasoline Direct Injection Engine)

  • 이호승;박성욱
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.198-206
    • /
    • 2023
  • In this study, visualization of in-cylinder spray behavior and spark channel stretching by air flow characteristics depending on engine operating conditions were investigated. For in-cylinder spray behavior, increase in engine rpm did not alter the counter-clockwise air flow direction and location of in-cylinder dominant air flow but increased average air flow velocity, which hindered spray propagation parallel to the piston surface. When injection timing was retarded, direction of in-cylinder dominant air flow was changed, and average air flow velocity was reduced resulting in an increase in spray penetration length and change in direction. For spark channel stretching, increase in air flow speed did not affect spark channel stretch direction but affected length due to increase in spark channel resistance and limitation of energy ignition coil can handle. Change in air flow direction affected spark channel stretch direction where the air flow was obstructed by ground electrode which caused spark channel direction to occur in the opposing direction of air flow. It also affected spark channel stretch length due to change in air flow speed around the spark plug electrode from the interaction between the air flow and ground electrode.

압축천연가스 겸용 차량의 출력 및 토크 향상을 위한 점화 진각 제어기 설계 (Design of Spark Advanced Controller for Improvement in Power and Torque of CNG Bi-Fuel Vehicle)

  • 박진현;김성훈;조승완;최영규
    • 한국정보통신학회논문지
    • /
    • 제14권7호
    • /
    • pp.1641-1646
    • /
    • 2010
  • 최근 들어 환경에 대한 관심이 높아지면서 대기오염 방지에 비중을 둔 CNG 연료에 대한 연구가 활발하다. 그러나, 가솔린연료에 비해 출력이 감소하며, 1회 충전 거리가 짧은 단점을 가지고 있다. 특히, 토크 및 출력 저하의 원인으로는 CNG 연료가 가솔린에 비해 단위체적당 발열량이 낮고, 화염 전파 속도가 느림에 따라 혼합기가 연소되는 타이밍 손실 등에 기인한다. 본 연구에서는 타이밍 손실을 고려한 점화 진각 제어장치를 설계하여 이를 차량에 실제 장착하고, 새시 다이나모미터(Chassis Dynamometer)에서 엔진 출력 및 토크를 측정하였다. 측정된 결과 일반적인 CNG 바이 퓨얼 시스템에 비하여 최대 토크 및 출력이 향상되었다.

디젤엔진개량에 의한 천연가스차량전환에 관한 연구 (A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement)

  • 한영출;오용석;나완용
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측 (Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine)

  • 이병해;이재철;송준호
    • 오토저널
    • /
    • 제13권2호
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

LPG/가솔린 Bi-Fuel 엔진성능에 관한 실험적 고찰 (An Experimental Study on Engine Performance of LPG/Gasoline Bi-Fuel)

  • 전봉준;박명호
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1433-1438
    • /
    • 2009
  • 본 논문의 목적은 점화시기의 변화가 LPG/가솔린 겸용차량에 미치는 영향을 살펴보기 위한 것으로 가솔린 전용연료 모드를 LPG 전용연료 모드로 진각시킨 제어시스템을 제안하여 엔진회전수(1500rpm, 2000rpm) 및 점화시기 ($5^{\circ}$,$10^{\circ}$,$15^{\circ}$,$20^{\circ}$)의 변화에 따른 실린더내의 가스압력, 압력상승률 및 열발생률을 측정하였다. 그 결과 실런더내의 가스압력 및 압력상승률은 기관의 회전속도가 1500rpm 및 2000rpm 모두 점화시기가 진각될수록 증가하였으나, $20^{\circ}$부근에서의 압력상승률값만 약간 낮게 나타났다. 또한, 열발생률은 1500rpm에서 점화시기가 진각될수록 증가하였으며 2000rpm의 $20^{\circ}$부근에서 감소하는 경향을 볼 수 있었다.

Cycle Simulation에 의한 가솔린기관의 성능과 배출물 예측 (The prediction of performance and emissions of a spark ignition engine by cycle simulation)

  • 이종원;정진은
    • 오토저널
    • /
    • 제5권2호
    • /
    • pp.48-55
    • /
    • 1983
  • The prediction of performance and emissions is presented for a spark ignition engine. a two zone, zero-dimensional model was employed which included thermodynamics, combustion and hear transfer, and a kinetic model employed for NOx. The model was used to analyze the processes of compression, combustion and expansion. Cylinder pressures and temperatures were calculated as a function of crankangle as well as engine performance and emissions. Predictions made with the simulation were compared with experimental data from a four cylinder spark ignition engine. Calculated pressures and, Co and Co$_{2}$ concentrations showed acceptable quantitative agreement with data. But calculated No concentrations were slightly different. A parametric study of the effect of variations in speed, combustion duration and spark timing was carried out. This simulation can be useful for design of spark ignition engines.

  • PDF