• Title/Summary/Keyword: Spacing rate

Search Result 349, Processing Time 0.029 seconds

A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array (일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구)

  • Park, Jeong;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF

Numerical prediction of hydrogen storaging performance of finned metal hybride beds (휜이 달린 수소저항합금 베드의 수소저장 성능의 수치적 예측)

  • Kim, Myeong-Chan;Lee, Sang-Yong;Gu, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.520-529
    • /
    • 1998
  • Heat and mass transfer behaviors of metal hydride beds were predicted by solving a set of volume-averaged equations numerically both for the gas (hydrogen) and the solid(metal hydride) phases. Time variations of temperature and hydrogen concentration ratio distributions were obtained for internally cooled, cylindrical-shaped beds with metal(aluminum) fins imbedded in them. Also, time variations of the space-averaged hydrogen concentration ratio were obtained. Temperature and velocity of the coolant, hydrogen pressure at the gas inlet, and the fin spacing were taken as the parameters. The hydrogen absorption rate increases with the higher velocity and the lower temperature of the coolant, and with the decrease of the fin spacing. Increasing of the hydrogen pressure at the gas inlet also promotes the rate of absorption though the increasing rate gradually slows down. The amount of the hydrogen storage per unit volume of the bed decreases with the tighter fin spacing despite of the higher absorption rate ; therefore, there should be an optimum fin spacing for a given volume of the system and the amount of the hydrogen storage, in which the absorption rate is the highest.

Design Guideline for Spacing between Tunnel and Interchange (터널과 인터체인지 이격거리 설계기준에 관한 연구)

  • 전영수;장재남;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • Where an interchange is located just after a tunnel not only it is impossible to install the traffic signs in tunnel sections but also sufficient sight distance to identify the interchange can't be provided. The objective of this study is to suggest the safety based spacing between tunnel and interchange. For this study accident rate was used as an index representing characteristics for vehicle operation to suggest the appropriate spacing. Traffic volume and the number of accidents on freeway from 1992 to 1997 were analyzed. The relationship between accident rate and spacing represents negative logarithm function such that shorter spacing increases accident rate. An appropriate safety based spacing between tunnel and interchange for four lane freeway with the design speed of 100kph was found as 2.6km.

  • PDF

The Influences of Reading Type, Line Length, and Interlinear Spacing on the Legibility of Korean Web Documents (읽기 형태, 줄 길이, 줄 간격이 한글 웹 문서의 가독성에 미치는 영향)

  • Shin, Jong-Hyun;Park, Min-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.197-205
    • /
    • 2003
  • Many people get plenty of information from World Wide Web, and the study of the factors that affect on reading task on web browser is presenting important issue. But domestic studies on legibility of Korean on web environment were relatively poor and the study about suitable text layout for skimming wasn't carried out also. At this point, this study was performed to investigate the effects of two types of reading, three levels of line length, and three levels of interlinear spacing on comprehension and reading rate when subjects read the materials on web browser. Reading speed, error rate, subjective preference and SACL(Stress and Arousal Checklist) evaluation were measured to evaluate the effects. Eighteen volunteer subjects participated in eighteen web document sessions with two different reading types, three different line lengths, and three different interlinear spacings. Statistical results from objective and subjective evaluations indicate that 50 characters per line of line length and 100 percents of interlinear spacing improved reading rate, overall error rates were reduced when reading normally, and SACL measures were increased at fast reading type. Consequently, in order to design text layout to retrieve information in WWW environment effectively, just applying guidelines of traditional printed material is not proper. Therefore, it is effective to consider reading type, line length, and interlinear spacing. Implications of these results and suggestions for the further study are also addressed.

Dendrite Arm Spacing and Carbide Morphology with Thermal Gradient and Solidification Rate in Directionally Solidified Ni-Base Superalloy (일방향 초내열합금에서 응고속도 및 온도구배 따른 수지상간격 및 탄화물 형상 변화)

  • Son, S.D.;Kim, Y.H.;Choi, G.S.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • The effects of thermal gradient and solidification rate on the dendrite arm spacing and carbide morphology were investigated in directionally solidified Ni-base superalloy, CM 247LC. Thermal gradient was controlled by changing the position of the cold chamber and the furnace set temperature. The interface morphology changed from the planar to dendritic as increasing solidification rate. It was found that the dendrite spacing decreased as increasing the thermal gradient as well as the solidification rate. Also, as increasing solidification rate, carbide morphology changed from blocky shape to script and spotty shapes.

Combustion Characteristics of Spherical Droplet in Turbulent Flow Field (난류 유동장 내 구형 액적의 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.132-137
    • /
    • 2005
  • The burning characteristics of interacting spherical droplet in a turbulent flow are numerically investigated. The transient combustion of 3-dimensionally arranged droplets, both the fixed streamwise droplet distances of 3 radii and 10 radii and different turbulence intensities, is studied. The results obtained from the present numerical analysis show that droplet vaporization rate for heptane droplet is insensitive to turbulence intensity, and that the transient flame configuration and retardation of droplet surface temperature augmentation with streamwise droplet spacing substantially influence vaporization process of interacting droplets. Single flame mode in which individual flames are merged into single flame, with decreasing streamwise droplet spacing, becomes faster. Therefore, vaporization rate of the second droplet with decreasing streamwise droplet spacing decreases remarkably with flame movement.

  • PDF

An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions (착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구)

  • 이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.

A Study on Cooling Rate and Dendrite Arm Spacing of Gas Atomized $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ Powder (가스아토마이징된 $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ 분말의 냉각속도와 수지상 가지 가격에 관한 고찰)

  • Kim, Ji-Hun;Ye, Byung-Joon;Kim, Young-Hawn
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.54-65
    • /
    • 1999
  • The present work is an attempt to evaluate the relationship between dendrite arm spacing and average cooling rate in gasatomized $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ powder by means of the following methods. One is calculation of heat transfer coefficient and average cooling rate, which are derived from estimated particle velocity during gas-atomization. The other is measurement of secondary dendrite arm spacing, which are observed on the particle surface. Then, we make experimental equation for this relationship in case of permanent mold casting and compare it with similar equation in case of rapidly solidified powder. Both average cooling rates and solidification rates are considered to represent the variance of dendrite arm spacings in two types soidification route. Even though there is a considerable difference in each average cooling rate, the dendrite arm spacing values are similar in two cases; particle diameter, $100\;{\mu}m$, and casting width, 2.05 mm. It is because that each solidification route has similar solidification rate.

  • PDF

Effect of Cooling Rate on Lamellar Structure and Hardness of Discontinuous Precipitates in Mg-Al-Zn Alloy (Mg-Al-Zn 합금에서 불연속 석출물의 층상 구조와 경도에 미치는 냉각 속도의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • The relationship between the hardness and interlamellar spacing of discontinuous precipitates (DPs) formed by continuous cooling was studied for Mg-9%Al-1%Zn alloy. After solution treatment at 683 K for 24 h, the specimens were cooled to room temperature with different cooling rates ranging from 0.2 to 2 K·min-1, in order to obtain DPs with various interlamellar spacings. It was found that cooling rate of 2 K·min-1 yielded only small amount of nodular DPs at the grain boundaries, while cooling rates below 2 K·min-1 yielded both DPs and continuous precipitates (CPs). The volume fraction of DPs increased with increasing cooling rate up to 0.5 K·min-1, over which it abruptly decreased. The hardness of DPs was increased with an increase in the cooling rate, whereas the interlamellar spacing of the DPs was decreased with respect to cooling rate. The hardness of the DPs formed by continuous cooling was correlated with the interlamellar spacing and can follow a Hall-Petch type relation as in the case of pearlite with lamellar morphology.

A Study on Unidirectionally Solidified Ni-base Eutectic Composites (일방향응고(一方向凝固)시킨 Ni기(基) 초내열(超耐熱) 공정복합재료(共晶複合材料)에 관(關)한 연구(硏究))

  • Lee, Joo-Hong;Hong, Yeong-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.437-445
    • /
    • 1988
  • The effect of interlamellar spacing on microstructural stability at high temperature was studied for unidirectionally solidified ternary $Ni\;/\;Ni_3Al-Ni_3$ Nb and binary $Ni-Ni_3Nb$ eutectic composite. The interlamellar spacing of both alloy systems were varied with the growth rate according to $"{\lambda}^2R=constant"$ relationship. As a result of isothermal heat treatments at high temperature it was considered that coarsening of lamellar structure was due to concentration gradient between the tip with a relatively small radius of curvature and the side of the thick lamellae with a larger radius of the opposite sign. Fault density was increased as the interlamellar spacing decreased. Therefore it is also considered that the higher coarsening rate of the specimen with the smaller interlamellar spacing was due to higher fault density. And the diference of coarsening rate between $Ni\;/\;Ni_3Al-Ni_3Nb$ and $Ni-Ni_3Nb$ eutectic composites was not observed when the interlamellar spacing was similar in size. This means that the presence of ${\gamma}'$ in ${\gamma}\;/\;{\gamma}'\;-{\delta}$ eutectic had no b arrier effect to diffusion through the ${\gamma}$ matrix.

  • PDF