• Title/Summary/Keyword: Space-time diversity

Search Result 349, Processing Time 0.024 seconds

Performance Analysis of Angle Time Transmit Diversity in Urban Area (도심환경에서 각도-시간 송신다이버시티의 성능분석)

  • Park, Byeong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.200-205
    • /
    • 2011
  • In multipath fading channel, diversity is essential to mitigate the impairments. In this paper, we have proposed the angle diversity scheme called ATTD(Angle Time Transmit Diversity) instead of Alamouti's STTD(Space Time Transmit Diversity) and have analyzed the performance of the proposed scheme when signal powers caused by the transmission to different angles are different. Based on it, we have measured the wireless vector-channel in the urban area, which has lots of high-story buildings, using the data collected from the 8 by 4 smart array antenna system that we made. According to the measured data, the received signals from different angles have different signal powers. Our performance analysis results show that the proposed scheme has better performance than the space diversity scheme when the received path signal power is at least -7dB compare to the strongest path signal power.

Comparisons of Diversity Techniques for OFDM Systems in Interference-Limited Environments (간섭 제한적인 환경에서의 OFDM 시스템의 다이버시티 기술의 비교)

  • Rim, Min-Joong;Kim, Hong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1043-1052
    • /
    • 2008
  • This paper compares the performances with space time coding and cyclic delay diversity techniques for OFDM systems in interference-limited environments. While a communication system usually use a diversity technique to improve its own performance, it is also necessary to consider the interference effects to other users as well if the system is operated in interference-limited environments. When there is no interference from or to other users, space time coding technique results in better performance than cyclic delay diversity. However, cyclic delay diversity can be better than space time coding if interferences to other users are considered.

On the Relationship Between the Performance Criteria of Unitary Space-Time Codes with Noncoherent and Coherent Decoding

  • Cheun, Kyung-Whoon;Kim, Jeong-Chang;Choi, Soong-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1145-1151
    • /
    • 2010
  • Hochwald et al. introduced unitary space-time codes for quasi-static Rayleigh fading channels which allows for noncoherent decoding when the channel response is not known at the receiver. However, when reliable information on the channel response is available, coherent decoding is preferable for improved performance. Here, we study the relationship between the performance criteria on the diversity and coding advantages provided by unitary space-time codes with noncoherent and coherent decoding. We show that when a unitary space-time code achieves full spatial diversity with noncoherent decoding, full spatial diversity is also guaranteed with coherent decoding.

Performance Evaluation of Space-Time Codes and Channel Estimation in OFDM System for Wireless LANs (무선 LAN을 위한 OFDM 시스템에서 시공간 부호들의 성능 분석 및 채널 추정에 관한 연구)

  • Lee, Sang-Mun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8B
    • /
    • pp.760-770
    • /
    • 2002
  • Transmit diversity is an efficient diversity technique to improve performance and spectrum efficiency in wireless communication . Coding scheme designed for the transmit diversity is called space-time coding. In this paper, we propose a training structure to apply the transmit diversity to improve the performance of IEEE802.11a OFDM systems. Based on this training structure, we propose a channel estimation scheme using curve fitting. Also we compare and evaluate the performance of space-time codes. The performance of both diversity using space-time codes and channel estimation scheme is investigated by computer simulation in quasi-static 2-ray rayleigh fading environment.

New Design for Linear Complex Precoding over ABBA Quasi-Orthogonal Space-Time Block Codes

  • Ran, Rong;Yang, Jang-Hoon;An, Chan-Ho;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1062-1067
    • /
    • 2008
  • ABBA codes, a class of quasi-orthognal space-time block codes (QoSTBC) proposed by Tirkkonen and others, allow full rate and a fast maximum likelihood (ML) decoding, but do not have full diversity. In this paper, a linear complex precoder is proposed for ABBA codes to achieve full rate and full diversity. Moreover, the same diversity produce as that of orthogonal space-time block code with linear complex precoder (OSTBC-LCP) is achieved. Meanwhile, the size of the linear complex precoder can be reduced by half without affecting performance, which means the same complexity of decoding as that of the conventional ABBA code is guaranteed.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

STF-OFDM Transmission Scheme with Frequency Diversity (주파수 다이버시티를 갖는 STF-OFDM 전송 기법)

  • 박상순;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.206-212
    • /
    • 2004
  • In this paper, we propose a STF(Space-Time-Frequency) coded OFDM(Orthogonal Frequency Division Multiplexing) transmission scheme as an attractive solution for high bit rate data transmission in a multipath fading environment. STBC(Space-Time Block Coding) has been proposed as a simple diversity scheme using two transmit antennas. Also ST-OFDM(Space-Time Block Coded OFDM) and SF-OFDM(Space-Frequency Block Coded OFDM) transmission scheme, that the STBC is applied to the OFDM, has been proposed. In this paper, we propose STF-OFDM transmission scheme that to coded in time, space and frequency domain. The STF-OFDM transmission scheme that we propose in this paper is the way to improve a performance of conventional ST-OFDM, by using frequency diversity.

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF

Space-Time Diversity Relaying Strategy using Cooperative Communication Technique (협력 통신 기법을 이용한 시공간 다이버시티 중계 전략)

  • Kim, Eun-Ki;Park, Noe-Yoon;Lee, Kwan-Seob;Kim, Young-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper a new space-time diversity relaying strategy using cooperative communication technique is proposed. More than one relaying terminals are included in one cooperative group to share their state information, such as frame error rate and channel state information. The best terminals are selected to send bit information using space-time diversity relay system. An implementation for the proposed scheme is also presented using the TDMA cooperative protocol. The resulting receive signal to transmit signal ratio and computer simulation demonstrate that the proposed strategy outperforms the conventional cooperative system.

English Performance of MIMO-OFDM Combing Bemaformer with Space-time Decoder in Multiuser Environments (다중 사용자 환경에서 빔 형성기와 결합된 Space-Time decoder을 가진 MIMO-OFDM 시스템의 성능)

  • Kim Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.775-783
    • /
    • 2006
  • In this paper, the new technique combining beamforming with space-time coding is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). When MIMO-OFDM system is employing Nt(the number of transmitterantenna) beamfomers and one S-T decoder at Nr receiver antennas, Nt signals removed CCI are outputted at the beamformer and then diversity gain can be got through space-time decoding. As the proposed technique can reduce cochannel interference and get diversity gain in the multi-user environment, the performance of MIMO-OFDM system is very improved. BER performance improvement and convergence behavior of the proposed approach are investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.