• 제목/요약/키워드: Space-Power

검색결과 3,248건 처리시간 0.038초

스털링기관용 재생기에 관한 기초연구(I) -재생기의 열교환 유효도가 기관 출력에 미치는 영향- (Basic Study on the Regenerator of Stirling Engine (I) -The influence of the heat exchange effectiveness of the regenerator on the engine power-)

  • 김태한;이정택;이시민
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.33-38
    • /
    • 2002
  • The indicated power of Stirling engine was affected by the heat exchange effectiveness of the regenerator. The temperature difference of working fluid between the expansion and the compression space of Stilting engine depends on the heat exchange effectiveness of the regenerator. The influence of the temperature ratio of expansion space to compression space of Stirling engine on the indicated power was analyzed by using Schmidt analysis in this study. In the Stirring engine, as the temperature ratio increased, the indicated power generally decreased. Therefor, it is necessary to develope the regenerator of high effectiveness. The actual indicated power was shown 64.9 percent of the predicted indicated power in maximum and 47.2 percent of that in minimum due to increased dead volume of engine, the loss of flow friction and heat transfer in the regenerator.

A Study on the Internal Structure of Heumgyeonggaknu

  • Kim, Sang Hyuk;Lee, Yong Sam;Lee, Min Soo;Ham, Sun Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권2호
    • /
    • pp.113-121
    • /
    • 2013
  • Heumgyeonggaknu is a water-hammering type automatic water clock which was made by Jang Yeong-Sil in 1438. The water clock that is located in Heumgyeonggaknu consists of Suho which is equipped with 2-stage overflow. Constant water wheel power is generated by supplying a fixed amount of water of Suho to Sususang, and this power is transferred to each floor at the same time. The 1st floor rotation wheel of Gasan consists of the operation structure which has the shape of umbrella ribs. The 2nd floor rotation wheel is made so that the 12 hour signal, Gyeong-Jeom signal, and Jujeon constitute a systematic configuration. The 3rd floor rotation wheel is made so that the signal and rotation of Ongnyeo and four gods can be accomplished. Based on the above conceptual design, this paper analyzed the internal signal generation and power transmission of Heumgyeonggaknu.

Optimized Space Vector Pulse-width Modulation Technique for a Five-level Cascaded H-Bridge Inverter

  • Matsa, Amarendra;Ahmed, Irfan;Chaudhari, Madhuri A.
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.937-945
    • /
    • 2014
  • This paper presents an optimized space vector pulse-width modulation (OSVPWM) technique for a five-level cascaded H-bridge (CHB) inverter. The space vector diagram of the five-level CHB inverter is optimized by resolving it into inner and outer two-level space vector hexagons. Unlike conventional space vector topology, the proposed technique significantly reduces the involved computational time and efforts without compromising the performance of the five-level CHB inverter. A further optimized (FOSVPWM) technique is also presented in this paper, which significantly reduces the complexity and computational efforts. The developed techniques are verified through MATLAB/SIMULINK. Results are compared with sinusoidal pulse-width modulation (SPWM) to prove the validity of the proposed technique. The proposed simulation system is realized by using an XC3S400 field-programmable gate array from Xilinx, Inc. The experiment results are then presented for verification.

변형 공간벡터 변조 기법이 적용된 Bq-ZSI를 이용한 유도전동기 구동시스템 (Bq-ZSI fed Induction Motor Drive System Using Modified Space Vector Modulation)

  • 한상협;김흥근;차헌녕;전태원;노의철
    • 전력전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2018
  • This study investigates a bidirectional quasi-Z-source inverter (Bq-ZSI) system with bidirectional power transfer capability and a modified space vector modulation scheme for reducing the ripple of the inductor current. By replacing the diode in the impedance network with an active switch, the power flow can be bidirectional. The average inductor current of the Bq-ZSI network is negative in the regenerative braking mode, thereby regenerating the power. In addition, modified space vector modulation scheme is applied to the Bq-ZSI to control shoot-through time effectively. A 5 kW prototype is built and tested to implement the proposed system. Experimental results show that the Bq-ZSI system is capable of regenerative braking of the induction motor and that the modified space vector modulation method is efficient.

Reliability Analysis of the 300 W GaInP/GaAs/Ge Solar Cell Array Using PCM

  • Shin, Goo-Hwan;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권2호
    • /
    • pp.69-74
    • /
    • 2019
  • Spacecraft requires sufficient power in orbit to perform its mission. So as to comply with system requirements, the sufficient power should be made by a solar cell array by photovoltaic power conversion. A life time of space program depends on its mission considering parts reliability and parts grade. Based on the mission life time, power equipment might be designed to meet specifications. In outer space, solar cell array might generate the dc power by photovoltaic conversion effects and GaInP/GaAs/Ge solar cells are used in this study. Space programs that require more than five years should select parts for high reliability applications. Therefore, reliability analysis for high reliability applications should be performed to check its fulfilment of the requirements. This program should also require more five years for its mission and we performed its analysis using parts count method (PCM) for its reliability. Finally, we performed reliability analysis and obtained quantitative figures found out 99.9%. In this study, we presented the reliability analysis of the 300 W GaInP/GaAs/Ge solar cell array.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.

Performance Analysis of M-ary Optical Communication over Log-Normal Fading Channels for CubeSat Platforms

  • Lim, Hyung-Chul;Yu, Sung-Yeol;Sung, Ki-Pyoung;Park, Jong Uk;Choi, Chul-Sung;Choi, Mansoo
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권4호
    • /
    • pp.219-228
    • /
    • 2020
  • A CubeSat platform has become a popular choice due to inexpensive commercial off-the-shelf (COTS) components and low launch cost. However, it requires more power-efficient and higher-data rate downlink capability for space applications related to remote sensing. In addition, the platform is limited by the size, weight and power (SWaP) constraints as well as the regulatory issue of licensing the radio frequency (RF) spectrum. The requirements and limitations have put optical communications on promising alternatives to RF communications for a CubeSat platform, owing to the power efficiency and high data rate as well as the license free spectrum. In this study, we analyzed the performance of optical downlink communications compatible with CubeSat platforms in terms of data rate, bit error rate (BER) and outage probability. Mathematical models of BER and outage probability were derived based on not only the log-normal model of atmospheric turbulence but also a transmitter with a finite extinction ratio. Given the fixed slot width, the optimal guard time and modulation orders were chosen to achieve the target data rate. And the two performance metrics, BER and outage data rate, were analyzed and discussed with respect to beam divergence angle, scintillation index and zenith angle.

Design Space Methodology and Its Application in Interior Permanent Magnet Motor Design

  • Fan, Tao;Li, Qi;Wen, Xuhui;Xu, Longya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.303-311
    • /
    • 2012
  • An innovative interpretation of the per-unit interior permanent magnet (IPM) machine model known as Design Space is presented in this paper. Based on the proposed Design Space formulation, an effective computation method to predict IPM machine performance factors, such as the current and power factor in a full range of speeds, is proposed. A systematic methodology is summarized, which translates the full speed range machine design procedure into the region determination on the so-called Design Space. The effect of dc-link voltage is also analyzed in a similar manner with the current and power factor. A series of IPM motors have been designed, and a preferred motor is selected with the help of the proposed Design Space Methodology (DSM), which has the best tradeoff between the nominal voltage and the dropped voltage condition. Experiment results show that the selected motor satisfies the machine requirements and all the design constrains, such as the current and back-EMF limitations.

Co60 Gamma-Ray Effects on the DAC-7512E 12-Bit Serial Digital to Analog Converter for Space Power Applications

  • Shin, Goo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2065-2069
    • /
    • 2014
  • The DAC-7512E is a 12-bit digital to analog converter that is low power and a single package with internal buffers. The DAC-7512E takes up minimal PCB area for applications of space power electronics design. The spacecraft mass is a crucial point considering spacecraft launch into space. Therefore, we have performed a TID test for the DAC-7512E 12-bit serial input digital to analog converter to reduce the spacecraft mass by using a low-level Gamma-ray irradiator with $Co^{60}$ gamma-ray sources. The irradiation with $Co^{60}$ gamma-rays was carried out at doses from 0 krad to 100 krad to check the error status of the device in terms of current, voltage and bit error status during conversion. The DAC-7512E 12-bit serial digital to analog converter should work properly from 0 krad to 30 krad without any error.

Pyramidal reaction wheel arrangement optimization of satellite attitude control subsystem for minimizing power consumption

  • Shirazi, Abolfazl;Mirshams, Mehran
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.190-198
    • /
    • 2014
  • The pyramidal reaction wheel arrangement is one of the configurations that can be used in attitude control simulators for evaluation of attitude control performance in satellites. In this arrangement, the wheels are oriented in a pyramidal configuration with a tilt angle. In this paper, a study of pyramidal reaction wheel arrangement is carried out in order to find the optimum tilt angle that minimizes total power consumption of the system. The attitude control system is analyzed and the pyramidal configuration is implemented in numerical simulation. Optimization is carried out by using an iterative process and the optimum tilt angle that provides minimum system power consumption is obtained. Simulation results show that the system requires the least power by using optimum tilt angle in reaction wheels arrangement.