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Abstract

The pyramidal reaction wheel arrangement is one of the configurations that can be used in attitude control simulators 

for evaluation of attitude control performance in satellites. In this arrangement, the wheels are oriented in a pyramidal 

configuration with a tilt angle. In this paper, a study of pyramidal reaction wheel arrangement is carried out in order to find 

the optimum tilt angle that minimizes total power consumption of the system. The attitude control system is analyzed and the 

pyramidal configuration is implemented in numerical simulation. Optimization is carried out by using an iterative process 

and the optimum tilt angle that provides minimum system power consumption is obtained. Simulation results show that the 

system requires the least power by using optimum tilt angle in reaction wheels arrangement. 
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1. Introduction

The attitude control subsystem is one of the main auxiliary 

systems in satellites. It is a three axes stabilized platform, 

allowing the satellite to point and correct in all directions in 

orbital missions. Its reliability and cost is important for the 

reliability and cost of the satellite as a whole. To evaluate the 

attitude control performance, not only numerical simulations, 

as well as some experiments using real mechanisms have 

been made, including attitude control simulators supported 

by spherical air bearings. Such simulators provide a low 

cost method of simulating satellite dynamics in a torque-

free environment. Actuators such as reaction wheels can be 

implemented in these simulators in different configurations.

The attitude control of small satellites is generally fulfilled 

by passive, semi-passive, and active systems. Active attitude 

control systems, like three-rotor reaction wheel systems, 

three-magnetorquers systems, or their combinations, with 

actuators enable to vary control torque, have been widely 

studied in recent years. 

If the satellite is equipped with three independent 

actuators, a complete solution to the set point and tracking 

control problems is available.

Dai and Jin [1] implemented a PD controller with friction 

compensation to stabilize the attitude control simulator. This 

controller produces attitude error of less than 0.02° on the X/Y 

axes and 0.05° on the Z axis. Another 3-axis control approach 

based on a scissored-pair CMG with parallel gimbal axes is 

presented by Steyn [2]. In this approach, an actuator is aligned 

along each principal body axis of the satellite to provide full 

three-axis control authority and maximize torque capability. 

Cruz and Bernstein [3] applied retrospective cost adaptive 

control to satellite attitude control using reaction-wheel 

actuators. This approach resulted acceptable accuracies 

for motion-to-rest maneuvers with unknown constant 

disturbances. Wisniewski and Kulczycki [4] also proposed 

the slew maneuver controller for a spacecraft equipped with 

a star camera and four reaction wheels in the tetrahedron 

configuration that can be used for on-board implementation. 

Wang et al. [5] showed that using the variable structure 

controller to substitute conventional PID can decrease 

the influence of reaction wheel static friction and improve 

attitude performance.

Besides the importance of controller design, the arrangement 
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of actuators has become a significant issue in many 

studies. Pyramidal configuration is an approach that can 

be considered as a specific arrangement of actuators in 

satellites and attitude simulators. Ismail and Varatharajoo 

[6] investigated several arrangements of actuators including 

three and four reaction wheels without questioning the 

effect of tilt angle changes in system performance. Guo et 

al. [7] presented a simple steering law for spacecraft attitude 

maneuver with control moment gyroscopes as an actuator in 

a pyramidal arrangement. However, no discussion is made 

about pyramidal arrangement optimization; the tilt angle was 

assumed to be 53.1°. Haruhisa Kurokawa [8] showed that the 

pyramid type single gimbal CMG system is one of the most 

effective candidate torquer for attitude control, having such 

advantages as a simple mechanism, a simpler steering law, 

and a larger angular momentum space. In that study, it was 

concluded that if the skew angle of pyramidal arrangement is 

tan-1(1/2), then the size of the workspace (allowed region of 

the angular momentum vector) along the three axes is almost 

identical. This configuration therefore gives the maximum 

unidirectional workspace size. If a spherical workspace is 

desired for convenience of the attitude control, this is the best 

configuration of four unit systems. Moreover, he showed that 

there is an optimal skew angle giving the largest workspace 

for each value of the aspect ratio in pyramidal systems. 

California Polytechnic State University has been developing 

the Cal Poly Spacecraft Attitude Dynamics Simulator (SADS), 

a reaction wheel controlled air bearing simulator. One of the 

design goals of the SADS project is to be able to easily test and 

verify spacecraft attitude control laws. Downs [9] and Silva 

[10] stated that the four reaction wheels are angled with the 

spin axis inclined by 57 to 61 degrees in this simulator. Also, 

Logan [11] stated that although the optimum configuration 

for equal tri-directional control is 53 degrees, the higher 

angle value allowed for more z-axis control authority which 

assisted in holding the platform upright. 

According to previous researches, it can be seen that great 

attention has been paid to design the control laws of attitude 

control system without consideration of the arrangement 

optimization of reaction wheels. In some researches the 

value of tilt angle is mentioned but the optimality of this 

parameter for having minimum power consumption was not 

the main objective of the researches. Therefore, the question 

of which tilt angle provides minimum power consumption 

remains unanswered.

In this paper the problem of attitude control by optimization 

of pyramidal reaction wheel arrangement based on changes 

in tilt angle is considered. The performance of such systems 

is simulated and the total power consumption of system 

is determined with different tilt angles. The variation of 

pyramidal reaction wheel arrangement along with changes 

in tilt angle is analyzed and the optimum tilt angle that 

optimizes the power consumption is obtained based on 

the simulation. As our simulation shows, the pyramidal 

reaction wheel arrangement with optimum tilt angle has an 

appropriate accuracy and does not need powerful sources 

of energy and therefore can be used for attitude control of 

satellites.

The paper is organized as follows. In section 2 the statement 

of the problem is given. Section 3 is devoted to the dynamics 

of attitude simulators. Simulation of the performance of 

the attitude control simulators with pyramidal reaction 

wheel arrangement is discussed in sections 4. Finally, the 

optimization of tilt angle in pyramidal arrangement is carried 

out in section 5 considering the simulations in previous 

section. Conclusions and discussion are given in Section 6.

2. Statement of the Problem

Configuration with redundant actuators is often adopted 

to ensure that the attitude control system can generate any 

direction of torque even if some of the actuators fail to work.

Consider an attitude control simulator with four reaction 

wheels in a pyramidal arrangement as depicted in Fig. 1. 

Fig. 1 shows the reference frame configuration which will be 

referred to throughout this paper. In this type of arrangement, 

the reaction wheels are aligned with the +x, +y, -x and -y body 

axes and inclined by the angle β as depicted in Fig. 2.
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The angle β (or its complementary angle) is known by 

many different names such as “tilt angle” [6], “skew angle” 

[8], “inclination angle” [10], or “scissor angle” [12]. This 

concept has been extended to enhance control authority 

and saturation times, while additionally adding redundancy 

to the system.

A simple estimation of system performance can be made 

at first sight. If the tilt angle is assumed to be 0 or 90 degrees, 

the control components in either one of the X, Y, or Z axis will 

be equal to zero and therefore three axis control will not be 

applied to the system.

As this angle approaches zero, the control component on 

the X and Y axis becomes larger. On the other hand, more 

control torques will be supplied for the Z axis by choosing 

a high tilt angle. It implies that there is an optimum tilt 

angle which results in the best efficiency of the system. In 

the design process of such systems, choosing a proper tilt 

angle is an important issue. The problem that discussed in 

this paper is finding the optimum tilt angle, which depends 

on the desired maneuverability of the system. One of the 

design criteria of this system is minimizing the total power 

consumption of the system during the attitude maneuver. 

Obviously, choosing a proper tilt angle will lead to achieve 

minimum power consumption. Also, other criteria such as 

maximum rotational speed of the wheels can be assumed 

as the main goal in this optimization as the availability of 

bearing in reaction wheel manufacturing process limits the 

maximum rotational speed of the wheels.

3. Modeling the Attitude Control System

The well-known Euler’s moment equation is used in 

modeling the attitude control system. Three scalar equations 

which describe Euler’s moment equation can be written as 

follows [13, 14].
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Where zyx MMM ,,  are the torques applied on each axis, zyx  ,,  are the angular velocitiy 

components around each axes and zyx III ,,  are the moment of inertias of the system around each axes. 

These equations are nonlinear, so they do not have an analytical closed-form solution. However, they can be 

solved under some relieving conditions. 

Quaternion is used for the attitude representation herein. Therefore, the derivatives of the Euler parameters 

can be updated by using the kinematics equation as follows [15]. 
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Also, the derivation of Euler angles from the attitude quaternion error is as follows. 
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The control law for stabilizing and attitude-maneuvering may be stated as a PD controller. Therefore the 
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Where comm , comm  and comm  are the Euler commands.  ,   and   are the Euler angular rates. 

Designing such a second-order control system is a trivial automatic control problem. It is required to 

determine the controller coefficients so that the three one-axis control systems about the body axes have the 

desired dynamic characteristics, such as natural frequency and damping coefficients, which will preferably 

be equal for all axes. The overall simulation block diagram of the attitude control system is depicted in Fig. 

3. 
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order control system is a trivial automatic control problem. 

It is necessary to determine the controller coefficients so 

that the three one-axis control systems about the body axes 

have the desired dynamic characteristics, such as natural 

frequency and damping coefficients, which will preferably 

be equal for all axes. The overall simulation block diagram of 

the attitude control system is depicted in Fig. 3.

4. ��Simulation of Pyramidal Reaction Wheel 
Arrangement 

The four reaction wheels are mechanized in a design 

frame, whose angular momentums form a vector hw=[h1 h2 h3 

h4]T as depicted in Fig. 4.

Each reaction wheel accelerates or decelerates to generate 

different magnitudes of angular momentum. Regarding Fig. 4, 

the control torques acting on each axis can be stated as follows.
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Here   is the tilt angle of the wheel axes to the body plane. The control vector cT̂ is computed by the 

control law defined in equation (5). 

To find the vector components of iT  some optimizing criterion is assumed. The norm of the vector
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The conditions for minimizing J will be. 
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Applying this condition yields the four wheels’ command control torques as follows [16]. 
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Consequently the changes of wheels’ rotational speed and power consumptions as functions of time can be 

obtained. The block diagram of this simulation is shown in Fig. 5. 

Fig. 5. System performance simulation block diagram
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Applying this condition yields the four wheels’ command control torques as follows [16]. 
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Consequently the changes of wheels’ rotational speed and power consumptions as functions of time can be 

obtained. The block diagram of this simulation is shown in Fig. 5. 
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Consequently the changes of the wheels’ rotational 

speed and power consumptions as functions of time can be 

obtained. The block diagram of this simulation is shown in 

Fig. 5.

By knowing the power consumption changes of the 

reaction wheels as a function of time, it is possible to 

determine the critical power consumption of the system 

regarding the attitude command. 

Regarding the proposed analysis, the pyramidal reaction 

wheel arrangement optimal tilt angle can be obtained. The 
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Fig. 3. Attitude control system block diagram 

4. Simulation of Pyramidal Reaction Wheel Arrangement  
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Here   is the tilt angle of the wheel axes to the body plane. The control vector cT̂ is computed by the 

control law defined in equation (5). 

To find the vector components of iT  some optimizing criterion is assumed. The norm of the vector

TTTTTT ][ 4321  is considered to be minimized as. 
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Fig. 4. Pyramidal reaction wheel arrangement
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input parameters including the moment of inertias of the 

system [Ix, Iy, Iz], the attitude commands 
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 are known. Using 

the attitude control simulation based on equation (1), the 

coefficients for the controller can be specified according to 

equation (5) regarding the desired accuracy and settling time 

for the three Euler angles. If the wheels tilt angle is known, 

the reaction wheels’ control torques required for the desired 

attitude maneuver will be achieved as shown in equation 

(6) and equation (10). Using a momentum management 

feedback loop, the rotational speed of the reaction wheels 

can be determined as shown in Fig. 5. Consequently, the 

power consumption of each reaction wheel can be achieved 

as a function of time during the attitude maneuver based on 

knowing the moment of inertias of the wheels. With this kind 

of simulation, the total power consumption of the system 

can be investigated and for each tilt angle.

5. Optimization of Tilt Angle

After the definition of the simulation process, the goal of 

the configuration design is to find the optimal tilt angle that 

minimizes the power consumption of the system. The inputs 

of the problem are considered based on the limitations and 

specifications of an attitude control simulator in the Space 

Research Laboratory as depicted in Fig. 6 [17, 18].

This three degree of freedom spacecraft simulator has 

been developed as part of a research program on spacecraft 

multi-body rotational dynamics and control, by the technical 

team in the Space Research Laboratory. This laboratory-

based test-bed is used to explore various issues and concepts 

in spacecraft dynamics and control. Pyramidal reaction 

wheel arrangement will be implemented for the next 

version of this simulator. Therefore, the inputs are assumed 

based on the specifications of the spacecraft simulator. The 

moment of inertias of the system are assumed to be [Ix, Iy, 

Iz]=[6, 12, 13]kg.m2. For the desired 3D attitude maneuver, 

the attitude angle commands for the three axes are assumed 

to be 

10
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control. Pyramidal reaction wheel arrangement is selected for the next version of this simulator. Therefore, 

the inputs are assumed based on the specifications of spacecraft simulator. The moment of inertias of the 

system are assumed to be 2.]13,12,6[],,[ mkgIII zyx  . For the desired 3D attitude maneuver, the attitude 

angle commands for three axes are assumed to be deg]40,20,30[],,[ comcomcom  and zero initial 

conditions are considered for simulation. The controller coefficients are determined as ]2.1,6.1,4.1[k  and

]3.6,8.5,6[ dk  in order to have acceptable settling time and point accuracy for all axes. Euler angles 

response using the stated control law is shown in Fig. 7. 

Fig. 7. System attitudes 

Fig.7 is the output of simulating Euler equations. This graph is based on the simulation block diagram 

depicted in Fig.3 and is the target profile for tilt angle optimization. 

As shown in Fig. 7, the controller is designed based on having acceptable angle gradients for all three axes. 

The settling time will be less than 30 seconds regarding the proposed control law. Based on this attitude 

maneuver, the control torques and the angular velocities about each axis will be as Fig. 8 and Fig. 9. 
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in Fig.3 and is the target profile for tilt angle optimization.

As shown in Fig. 7, the controller is designed based on 

having acceptable angle gradients for all three axes. The 

settling time will be less than 30 seconds regarding the 

proposed control law. Based on this attitude maneuver, the 

control torques and the angular velocities about each axis 

will be as shown in Fig. 8 and Fig. 9.

After finalizing the control torques, the reaction wheels’ 

performance can be simulated for different tilt angles. Each 

simulation reports a value for the power consumption of 

the system. Therefore, the changes of power consumption 

with different tilt angles can be plotted. In the selected case, 

the tilt angle is changed from 10 to 80 degrees with step of 

1 degree. By considering the moment of inertia of 0.005kg.
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This three degree of freedom spacecraft simulator has been developed as part of a research program on 

spacecraft multi-body rotational dynamics and control, by the technical team in Space Research Laboratory. 

Fig. 6. The attitude control simulator in Space Research Laboratory
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m2 for all the actuators, the reaction wheels’ performance is 

simulated for each tilt angle. Results are illustrated in Fig. 10.

Figure 10 shows the power consumption of system for 

each tilt angle. According to this figure, it can be concluded 

that the tilt angle of 32 degrees produces the minimum 

power consumption; this tilt angle will be the best choice 

for the spacecraft simulator if the design criterion is 

power consumption. By simulating the reaction wheels’ 

performance with tilt angle of 32 degrees, the following 

results are achieved. Torque changes of reaction wheels 

along with control torques of three axes are given in Fig. 11.

The rotational speeds of the wheels are illustrated in Fig. 

12.

Consequently, the power consumption of reaction wheels 

and total power consumption of the system are depicted in 

Fig. 13 and Fig. 14 respectively.

Clearly the maximum power consumption of the system 

is 44.28 W as specified in Fig. 10. The peak point of this plot 

is at the beginning of attitude maneuver at t=0.77sec. In this 

time, the system requires the power of 44.28 Watt. Results 

also show that the critical wheel in specifying the maximum 

control torque is not the same as the wheel in specifying 

the maximum rotational speed. The reaction wheel which 

produces highest control torque is RW3 and the maximum 

control torque reaches 0.6298 N.M in this attitude maneuver 

regarding Fig. 11. On the other hand, RW4 is the actuator 

which has the maximum rotational speed of 935 RPM at   

t=2.19sec regarding Fig. 12. Note that the wheels in such 

systems are similar (having the same performance and 
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Fig. 8. System control torques 

Fig. 9. System angular velocities 

After finalizing the control torques, the reaction wheels’ performance can be simulated for different tilt 

angles. Each simulation reports a value for the maximum power consumption of the system. Therefore, the 

changes of maximum power consumption with different tilt angles can be plotted. In the selected case, the 

tilt angle is changed from 10 to 80 degrees with step of 1 degree. By considering the moment of inertia of 

2.005.0 mkg  for all the actuators, the reaction wheels’ performance is simulated for each tilt angle. Results 

are illustrated in Fig. 10. 

Fig. 8. System control torques
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Fig. 9. System angular velocities 

After finalizing the control torques, the reaction wheels’ performance can be simulated for different tilt 

angles. Each simulation reports a value for the maximum power consumption of the system. Therefore, the 

changes of maximum power consumption with different tilt angles can be plotted. In the selected case, the 

tilt angle is changed from 10 to 80 degrees with step of 1 degree. By considering the moment of inertia of 

2.005.0 mkg  for all the actuators, the reaction wheels’ performance is simulated for each tilt angle. Results 

are illustrated in Fig. 10. 

Fig. 9. System angular velocities
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Fig. 10 System power consumption as a function of tilt angle 

Fig. 10 shows the maximum power consumption of system for each tilt angle. According to this figure, it 

can be concluded that the tilt angle of 32 degrees produces the minimum power consumption. In the other 

word, this tilt angle will be the best choice for the spacecraft simulator if the design criterion is power 

consumption. By simulating the reaction wheels’ performance with tilt angle of 32 degrees, the following 

results are achieved. Torque changes of reaction wheels along with control torques of three axes are given in 

Fig. 11. 

Fig. 11. Control torque of reaction wheels and three axes 

Fig. 10. System power consumption as a function of tilt angle
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Fig. 10 System power consumption as a function of tilt angle 

Fig. 10 shows the maximum power consumption of system for each tilt angle. According to this figure, it 

can be concluded that the tilt angle of 32 degrees produces the minimum power consumption. In the other 

word, this tilt angle will be the best choice for the spacecraft simulator if the design criterion is power 

consumption. By simulating the reaction wheels’ performance with tilt angle of 32 degrees, the following 

results are achieved. Torque changes of reaction wheels along with control torques of three axes are given in 

Fig. 11. 

Fig. 11. Control torque of reaction wheels and three axes Fig. 11. ��Control torque of reaction wheels and three axes at a tilt 
angle of 32°
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The rotational speeds of the wheels are illustrated in Fig. 12. 

Fig. 12. Rotational speed of reaction wheels 

Consequently, the power consumption of reaction wheels and total power consumption of the system are 

depicted in Fig. 13 and Fig. 14 respectively. 

Fig. 13. Power consumption of reaction wheels 

Fig. 12. Rotational speed of reaction wheels at a tilt angle of 32°
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characteristics). Therefore, these values for torque and speed 

along with tilt angle should be considered in designing 

attitude control systems with reaction wheels in pyramidal 

arrangement.

The presented optimization indicates that the tilt angle 

of 32deg is the best choice for attitude control system 

considering the mentioned assumptions. The dependency of 

this value on the other parameters is an issue which should 

be considered. In the other word, the changes of optimal tilt 

angle with variations in the primary assumptions need to be 

investigated. In order to examine such dependencies, known 

and unknown design parameters should be specified.

The design process of attitude control systems can 

generally be divided into three phases: conceptual design, 

preliminary design, and final detailed design. The approach 

presented here is one of the aspects of the detailed design 

phase where some of the parameters are known and have 

been specified in previous design stages while some of them 

are still unknown and need to be specified along with tilt 

angle. Summary of these parameters are shown in Table 1.

While this approach is in the detail design phase, 

previous design stages have been completed and most of the 

parameters are known and fixed. The mission and objective is 

specified at the beginning of the entire design process so the 

desired attitude maneuver is known. Therefore parameters 

such as angle commands, settling time and initial conditions 

are known. Consequently the controller coefficients are 
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The rotational speeds of the wheels are illustrated in Fig. 12. 

Fig. 12. Rotational speed of reaction wheels 

Consequently, the power consumption of reaction wheels and total power consumption of the system are 

depicted in Fig. 13 and Fig. 14 respectively. 

Fig. 13. Power consumption of reaction wheels Fig. 13. Power consumption of reaction wheels at a tilt angle of 32°
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Fig. 14. System total power consumption 

Clearly the maximum power consumption of the system is 44.28 W as it was specified in Fig. 10. The peak 

point of this plot is at the beginning of attitude maneuver at sec77.0t . In this time, the system requires the 

power of 44.28 Watt. Results also show that the critical wheel in specifying the maximum control torque is 

not the same as the wheel in specifying the maximum rotational speed. The reaction wheel which produces 

highest control torque is RW3 and the maximum control torque reaches 0.6298 N.M in this attitude 

maneuver regarding Fig. 11. On the other hand, RW4 is the actuator which has the maximum rotational 

speed of 935 RPM at sec19.2t regarding Fig. 12. Note that the wheels in such systems are similar with 

same performance and characteristics. Therefore, these values for torque and speed along with tilt angle 

should be considered in designing attitude control system with reaction wheels in pyramidal arrangement. 

The presented optimization indicates that the tilt angle of 32deg is the best choice for attitude control 

system regarding mentioned assumptions. The dependency of this value on the other parameters is an issue 

which should be considered. In the other word, the changes of optimal tilt angle with variations in primary 

assumptions need to be investigated. In order to examine such dependency, known and unknown design 

parameters should be specified. 

The design process of attitude control systems can generally be divided into three phases: conceptual 

design, preliminary design, and final detailed design. The approach presented here is one of the tasks in 

detailed design phase where some of the parameters are known and has been specified in previous design 

Fig. 14. System total power consumption at a tilt angle of 32°

Table 1. Optimization parametersTable 1. Optimization parameters 

Parameter Description Assumed value 

],,[ zyx III System’s moment of inertias 2.]13,12,6[ mkg

],,[ comcomcom  Attitude angle commands deg]40,20,30[ 

)](),(),([ ttt  Desired attitude maneuver Fig. 7 

],,[ 000  Initial conditions [0,0,0] deg 

totalt Settling time 30 sec 










d

p

k
k

PD controller coefficients 







 3.68.56

2.16.14.1

wI
Reaction wheels’ moment of 

inertias
2.005.0 mkg
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Fig. 15. System power as a function of tilt angle and wheel’s moment of inertia 

Fig. 15 shows the maximum power consumption of system as a function of tilt angle and moment of inertia 

of reaction wheel in pyramidal configuration. Fig.15 (a) shows the actual value of system power while Fig.15 

(b) shows the scaled value of the surface between 0 and 1. Regarding Fig.15 it can be seen that the optimal 

values of tilt angle can be defined on a curve instead of a point which was on Fig. 10. This optimal curve 

represents the optimal values of tilt angle for each wheel’s moment of inertia. It can be observed that the 

optimal tilt angle for each moment of inertia is the same, while system power gradients varies for each 

moment of inertia. Therefore, regardless of what moment of inertia the actuators have, the optimal tilt angle 
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known because all depend on the time profile of attitude 

angles. Primary design of the structure is also done and 

therefore the system’s moments of inertias are known. In the 

current phase of design process, the only parameter which 

should be specified along with the tilt angle is the reaction 

wheels’ moment of inertias. Tilt angle optimization along 

with changes in reaction wheels’ moment of inertias are 

investigated in Fig. 15.

Fig. 15 shows the maximum power consumption of the 

system as a function of tilt angle and moment of inertia of the 

reaction wheel in pyramidal configuration. Fig.15 (a) shows 

the actual value of system power while Fig.15 (b) shows the 

scaled value of the surface between 0 and 1. Fig.15 shows 

that it can be seen that the optimal values of tilt angle can 

be defined on a curve instead of a point (as in Fig. 10). This 

optimal curve represents the optimal values of tilt angle for 

each wheel’s moment of inertia. It can be observed that the 

optimal tilt angle for each moment of inertia is the same, 

while system power gradients vary for each moment of 

inertia. Therefore, regardless of what moment of inertia the 

actuators have, the optimal tilt angle is 32 deg for the system 

with moment of inertias of [6, 12, 13]kg.m2 and command 

angles of [30, 21, -40]deg.

6. Conclusions

The orientations of the four reaction wheels mechanized 

in a spacecraft involve a typical optimization of configuration 

design. This paper focused on optimization of pyramidal 

reaction wheel arrangement by finding the optimum tilt 

angle which results in minimum power consumption for the 

system.

By configuration optimization, the performances of 

the system can be maximized with minimum power 

consumption. Simulation shows that the tilt angle of 32 

degrees in pyramidal reaction wheel arrangement results 

minimum power consumption for the assumed attitude 

control simulator with the moment of inertias of [Ix, Iy, Iz]=[6, 

12, 13]kg.m2. This optimization process can be repeated for 

systems with different specifications and maneuverabilities.

Relatively little research has been conducted on 

optimization of a pyramidal arrangement. Similar researches 

by other authors concerning this kind of optimization 

indicate that the optimality criterion plays an important role 

in specifying the optimum tilt angle. While this paper focus 

on the minimization of power consumption, other design 

optimizations are based on optimizing the momentum/

torque envelop [19, 20] or workspace size [8]. Comparing the 

obtained optimal value for tilt angle in this study with the one 

used in similar simulations and projects indicates a small 

difference, leading us to conclude that the optimum tilt angle 

varies with requirements and criteria such as controller type, 

system moment of inertias, and desired maneuverability. 

The problem of configuration optimization in pyramidal 

reaction wheel arrangements is a vast study and can be 

investigated with different approaches. Other criteria in 

designing this platform such as maximum control torque 

and maximum rotational speed of the wheels can also be 

considered in specifying the optimum tilt angle. It could 

be the optimal tilt angle of 32° found in this study could be 

investigated to see if it also minimizes the critical control 

torque and the rotational speed of the wheels. 

In an advanced approach, the tilt angle which minimizes 

all three criteria (power, torque, and rotational speed) could 

be analyzed and an optimum tilt angle can be found using 

proper weight functions for each criterion.

Another approach might be a sensitivity analysis of 

optimum tilt angle. Advanced performance simulation of 

this system may lead us to the relation of optimized tilt angle 

and other parameters such as the moment of inertias or the 

controller type. 
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