• Title/Summary/Keyword: Space-Frequency OFDM transmit diversity scheme

Search Result 17, Processing Time 0.031 seconds

Transmit Diversity Using Windowing Scheme in OFDM System (OFDM 시스템에서 윈도윙 기법을 이용한 송신 다이버시티)

  • Kim, Yong-June;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.871-877
    • /
    • 2007
  • In this paper, we propose a new transmit diversity scheme using window functions in orthogonal frequency division multiplexing (OFDM) system. Transmit diversity of the scheme is varied with window functions and the condition of the window function to maximize transmit diversity is derived. The proposed scheme can be considered as a generalization of the diversity schemes such as cyclic delay diversity (CDD), orthogonal transmit diversity (OTD), and frequency switched transmit diversity (FSTD).

STF-OFDM Transmission Scheme with Frequency Diversity (주파수 다이버시티를 갖는 STF-OFDM 전송 기법)

  • 박상순;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.206-212
    • /
    • 2004
  • In this paper, we propose a STF(Space-Time-Frequency) coded OFDM(Orthogonal Frequency Division Multiplexing) transmission scheme as an attractive solution for high bit rate data transmission in a multipath fading environment. STBC(Space-Time Block Coding) has been proposed as a simple diversity scheme using two transmit antennas. Also ST-OFDM(Space-Time Block Coded OFDM) and SF-OFDM(Space-Frequency Block Coded OFDM) transmission scheme, that the STBC is applied to the OFDM, has been proposed. In this paper, we propose STF-OFDM transmission scheme that to coded in time, space and frequency domain. The STF-OFDM transmission scheme that we propose in this paper is the way to improve a performance of conventional ST-OFDM, by using frequency diversity.

Performance Evaluation of Fill Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder for Four Transmit Antennas MIMO System (4개의 송신 안테나 MIMO 시스템을 위한 DAC-ZF 수신 기법과 결합된 Full Rate 준직교 QOSTF-OFDM 관한 연구)

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1092-1100
    • /
    • 2006
  • In this paper, we propose a full rate quasi-orthogonal space-time-frequency block coded orthogonal frequency division multiplexing(QOSTF-OFDM) that can achieve full symbol rate with four transmit antennas. Sincr: the proposed QOSTF-OFDM can not achieve full diversity, we use diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at receive side. At the same frequency efficiency, compared with linear orthogonal space-time codes which can not achieve full rate with four transmit antennas over complex constellations, low level modulation can be employed by proposed scheme due to its full rate, i.e., modulation advantage can be achieved. Due to modulation advantage and collected diversify advantage, the proposed scheme exhibits better BER performance than other orthogonal schemes.

Joint Processing of Zero-Forcing Detection and MAP Decoding for a MIMO-OFDM System

  • Sohn, In-Soo;Ahn, Jae-Young
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.384-390
    • /
    • 2004
  • We propose a new bandwidth-efficient technique that achieves high data rates over a wideband wireless channel. This new scheme is targeted for a multiple-input multiple- output orthogonal frequency-division multiplexing (MIMO-OFDM) system that achieves transmit diversity through a space frequency block code and capacity enhancement through the iterative joint processing of zero-forcing detection and maximum a posteriori (MAP) decoding. Furthermore, the proposed scheme is compared to the coded Bell Labs Layered Space-Time OFDM (BLAST-OFDM) scheme.

  • PDF

Performance Evaluation of Channel Estimation using Trigonometric Polynomial Approximation in OFDM Systems with Transmit Diversity (송신 다이버시티를 가진 OFDM 시스템에서 삼각다항식 근사화를 이용한 채널 추정 기법의 성능평가)

  • 이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.248-256
    • /
    • 2003
  • Space-time coding was designed for an efficient transmit diversity technique to improve performance of wireless communication. For the transmit diversity using space-time coding, the receiver requires to estimate channel parameters corresponding to each transmit antennas. In this paper, we propose an efficient channel estimation scheme based on trigonometric polynomial approximation in OFDM systems with transmit diversity using space-time coding. The proposed scheme is more efficient than the conventional scheme in terms of the computational complexity. For QAM modulation, when the size of FFH is 128, the conventional scheme with significant tap caching of 7 requires 9852 complex multiplications for TU, HT and BU channels. But the proposed scheme requires 2560, 7680 and 3584 complex multiplications for TU, HT and BU channels, respectively. Especially, for channels with smaller Doppler frequency and delay spreads, the proposed scheme has the improved BER performance and complexity. In addition, we evaluate the performance of maximum delay spread estimation in unknown channel. The performance of the proposed scheme is investigated by computer simulation in various multi-path fading environments.

Efficient Symbol Detection Algorithm for Space-frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법을 위한 효율적인 심볼 검출 알고리즘)

  • Jung Yun ho;Kim Jae seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.283-289
    • /
    • 2005
  • In this paper, we propose two efficient symbol detection algorithms for space-frequency OFDM (SF-OFDM) transmit diversity scheme. When the number of sub-carriers in SF-OFBM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithms eliminate this interference in a parallel or sequential manlier and achieve a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithms is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithms achieve the gain improvement of about 3 dB. The symbol detectors with the proposed algorithms are designed in a hardware description language and synthesized to gate-level circuits with the $0.18{\mu}m$ 1.8V CMOS standard cell library. With the division-free architecture, the proposed SF-OFDM-PIC and SF-OFDM-SIC symbol detectors can be implemented using 140k and 129k logic gates, respectively.

Performance Improvement of OFDM System Using Transmit Diversity with Space-Time Block Coding

  • Yorwittaya, N.;Chamchoy, M.;Supanakoon, P.;Tangtisanon, P.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1066-1069
    • /
    • 2002
  • Orthogonal frequency division multiplexing (OFDM) is a special technique for communication systems which can support the high data rate transmission with sufficient robustness to fading channels. Tansmitter diversity with space-time block coding (STBC) is an attractive transmission scheme to improve the performance of systems. In this paper, we compare the performance of space-time block coded OFDM systems with that of conventional OFDM systems over fast fading channels. The block-interleaved (BI) STBC and frequency hopping (FH) OFDM are proposed in the study to provide the maximum achievable diversity gains. As the simulation results, the STBC OFDM, Bl-STBC OFDM and Bl-STBC FH-OFDM provide the much improved performance over the conventional OFDM. And the Bl-STBC FH-OFDM also provide the better performance than the STBC OFDM and Bl-STBC OFDM, especially, in the case of the two transmit antennas are employed while BI-STBC FH-OFDM can maintain the same data rate of 12 Mbps.

  • PDF

Performance Improvement of STBC-OFDM System with Advanced Transmit Diversity in Mobile Communications Environment (이동통신 환경에서 개선된 송신 다이버시티를 이용하는 STBC-OFDM 시스템의 성능 개선)

  • 김장욱;양희진;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.444-450
    • /
    • 2004
  • In mobile communications environment, STBC-OFDM(Space Time Block Code-Orthogonal Frequency Division Multiplexing) system with transmit diversity obtains the MRRC(Maximal Ratio Receiver Combining) diversity gain in time-invariant channel between two received symbols. But in time-variant channel, due to the interference between received symbols, MRRC diversity gain cant be obtained. So, when the mobile device with transmit diversity moves in high speed, the scheme to reduce the performance degradation due to the interference is needed. In this paper, we propose the receiver architecture with advanced transmit diversity, which improves the performance of STBC-OFDM system. The proposed architecture obtains the diversity gain without the change of transmit bandwidth at the receiver with the interference canceller using ZF(Zero Forcing) algorithm. Simulation results show performance improvement as doppler shift is increasing.

Implementation of WLAN Baseband Processor Based on Space-Frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법 기반 무선 LAN 기저대역 프로세서의 구현)

  • Jung Yunho;Noh Seungpyo;Yoon Hongil;Kim Jaeseok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose an efficient symbol detection algorithm for space-frequency OFDM (SF-OFDM) transmit diversity scheme and present the implementation results of the SF-OFDM WLAN baseband processor with the proposed algorithm. When the number of sub-carriers in SF-OFDM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithm eliminates this interference in a parallel manner and obtains a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithm is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithm obtains about 3 dB gain over the conventional detection algorithm. The packet error rate (PER), link throughput, and coverage performance of the SF-OFDM WLAN with the proposed detection algorithm are also estimated. For the target throughput at $80\%$ of the peak data rate, the SF-OFDM WLAN achieves the average SNR gain of about 5.95 dB and the average coverage gain of 3.98 meter. The SF-OFDM WLAN baseband processor with the proposed algorithm was designed in a hardware description language and synthesized to gate-level circuits using 0.18um 1.8V CMOS standard cell library. With the division-free architecture, the total logic gate count for the processor is 945K. The real-time operation is verified and evaluated using a FPGA test system.

Pseudo-Orthogonal Space-Time Block Codes for MIMO-OFDM Systems over Frequency-Selective Channels

  • Lee, Heun-Chul;Park, Seok-Hwan;Lee, In-Kyu
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.340-347
    • /
    • 2007
  • This paper proposes a new class of Space-Time Block Codes, which is manipulated from the existing transmit diversity schemes. We analyze the performance and the receiver complexity of the proposed scheme and confirm that the new diversity scheme can yield performance gain over other existing four-transmit antenna cases. By relaxing the diversity criterion on code designs, the proposed space-time code provides a full transmission rate for four-transmit antennas and makes it possible to approach the open-loop Shannon channel capacity. Outage capacity and simulation results are used to show that substantial improvements in performance while maintaining a simple linear processing receiver structure are obtained in frequency selective channels.

  • PDF