In this study, a star identification algorithm which utilizes pivot patterns instead of apparent magnitude information was developed. The new star identification algorithm consists of two steps of recognition process. In the first step, the brightest star in a sensor image is identified using the orientation of brightness between two stars as recognition information. In the second step, cell indexes are used as new recognition information to identify dimmer stars, which are derived from the brightest star already identified. If we use the cell index information, we can search over limited portion of the star catalogue database, which enables the faster identification of dimmer stars. The new pivot algorithm does not require calibrations on the apparent magnitude of a star but it shows robust characteristics on the errors of apparent magnitude compared to conventional pivot algorithms which require the apparent magnitude information.
In this paper, we propose a modified Viterbi algorithm to compensate for endpoint detection error during the decoding phase of an isolated word recognition task. Since the conventional Viterbi algorithm explores only the search space whose boundaries are fixed to the endpoints of the segmented utterance by the endpoint detector, the recognition performance is highly dependent on the accuracy level of endpoint detection. Inaccurately segmented word boundaries lead directly to recognition error. In order to relax the degradation of recognition accuracy due to endpoint detection error, we describe an unconstrained search of word boundaries and present an algorithm to explore the search space with efficiency. The proposed algorithm was evaluated by performing a variety of simulated endpoint detection error cases on an isolated word recognition task. The proposed algorithm reduced the Word Error Rate (WER) considerably, from 84.4% to 10.6%, while consuming only a little more computation power.
In this paper, we propose a discriminative training algorithm for the stochastic segment model (SSM) in continuous speech recognition. As the SSM is usually trained by maximum likelihood estimation (MLE), a discriminative training algorithm is required to improve the recognition performance. Since the SSM does not assume the conditional independence of observation sequence as is done in hidden Markov models (HMMs), the search space for decoding an unknown input utterance is increased considerably. To reduce the computational complexity and starch space amount in an iterative training algorithm for discriminative SSMs, a hybrid architecture of SSMs and HMMs is programming using HMMs. Given the segment boundaries, the parameters of the SSM are discriminatively trained by the minimum error classification criterion based on a generalized probabilistic descent (GPD) method. With the discriminative training of the SSM, the word error rate is reduced by 17% compared with the MLE-trained SSM in speaker-independent continuous speech recognition.
이 논문에서는 모바일 기기상에서 카메라기반 악보인식을 위한 오선 두께와 오선 간격을 추정하는 전처리 기술을 제안한다. 캡쳐된 영상은 조명이나, 흐려짐, 저해상도 등의 많은 왜곡으로 인해 인식에 어려움이 있다. 특히 복잡한 배경을 가지고 있는 악보 영상인식의 경우 더욱 그렇다. 악보 기호 인식에서 오선 두께와 오선 간격은 인식에 큰 영향을 끼친다. 이들 정보는 이진화에도 사용되는데, 복잡한 배경을 가지고 있는 경우 일반적인 이진 영상은 오선 두께와 간격을 추정하는데 만족스럽지 못하다. 따라서 우리는 에지영상에서 런-길이 엔코딩 기술을 이용해 오선 두께와 간격 추정하는 강건한 알고리즘을 제안한다. 제안된 방법은 2단계로 구성되어 있다. 첫 번째 단계는 소벨 연산자에 의해 영역별로 에지 영상을 기반으로 오선 두께와 간격을 추정한다. 각 에지 영상의 열은 런-길이 엔코딩 알고리즘에 의해 기술된다. 두 번째 단계는 안정한 경로 알고리즘을 이용한 오선 검출과 오선 위치를 추적하는 적응적 LTH알고리즘을 이용한 오선 제거이다. 실험결과 복잡한 영상의 경우에도 강건함과 높은 인식률을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권1호
/
pp.208-223
/
2015
To solve the problem of face recognition with complex changes and further improve the efficiency, a new near-infrared face recognition algorithm which fuses E-GV-LBP and FKNN algorithm is proposed. Firstly, it transforms near infrared face image by Gabor wavelet. Then, it extracts LBP coding feature that contains space, scale and direction information. Finally, this paper introduces an improved FKNN algorithm which is based on spatial domain. The proposed approach has brought face recognition more quickly and accurately. The experiment results show that the new algorithm has improved the recognition accuracy and computing time under the near-infrared light and other complex changes. In addition, this method can be used for face recognition under visible light as well.
By using a concept of interrelation vector between line segments a new algorithm for partial shape recognition of two-dimensional objects is introduced. The interrelation vector which is invariant under translation rotation and scaling of a pair of line segments is used as a feature information for polygonal shape recognition. Several useful properties of the interrelation vector are also derived in relation to efficient partial shape recognition. The proposed algorithm requires only small space of storage and is shown to be computationally simple and efficient.
Producing the relevant information (features) from the CAD models of CAM, called feature recognition or extraction, is the essential stage for the integration of CAD and CAM. Most feature recognition methods, however, have problems in the recognition of intersecting features because they do not handle the intersection geometry properly. In this paper, we propose a machining feature recognition algorithm, which has a solid model consisting of orthogonal primitives as input. The algorithm calculates candidate features and constitutes the Intersection Geometry Matrix which is necessary to represent the spatial relation of candidate features. Finally, it recognizes machining features from the proposed candidate features dividing and growing systems using half space and Boolean operation. The algorithm has the following characteristics: Though the geometry of part is complex due to the intersections of design primitives, it can recognize the necessary machining features. In addition, it creates the Maximal Feature Volumes independent of the machining sequences at the feature recognition stage so that it can easily accommodate the change of decision criteria of machining orders.
음성인식의 고속화를 위한 저자들에 의한 기존의 연구에서는 탐색이 진행함에 따라 시간방향의 탐색공간 문턱치를 가변적으로 적용하여 인식률의 저하없이 인식속도를 개선시켰다. 이 방법은 탐색 공간을 효과적으로 줄일 수는 있었으나 문턱치를 결정하기 위해서 여러 번의 사전 실험을 수행하여야 하는 번거러움이 있었다. 이러한 문제점을 해결하기 위하여 본 논문에서는 이전 탐색구간에 대한 최대우도와 후보들의 우도를 이용하여 현재 탐색구간의 문턱치를 탐색이 진행하는 과정에서 자동적으로 구하는 적응 프루닝 문턱치 알고리즘을 제안하였다. 제안한 알고리즘의 유효성을 확인하기 위해 국내 행정단위 시 (도), 구 (군), 동 (읍, 면), 번지를 구성하는 단어로 구성된 주소 인식 시스템에 적용하여 기존의 방법과 제안한 방법을 비교 검토하였다. 인식실험 결과, 연결단어 인식률 96.0%, 단어 인식률이 98.7%인 경우를 기준으로 하였을 때 제안된 방법이 기존의 고정 프루닝과 가변 프루닝 문턱치에 비하여 인식률 저하없이 각각 14.4%와 9.14%의 탐색 공간을 상대적으로 줄일 수 있어 제안된 방법의 유효성을 확인할 수 있었다.
In this paper, we propose a new approach to sequential linear regression adaptation of continuous density hidden Markov models (CDHMMs) based on transformation space model (TSM). The proposed TSM which characterizes the a priori knowledge of the training speakers associated with maximum likelihood linear regression (MLLR) matrix parameters is effectively described in terms of the latent variable models. The TSM provides various sources of information such as the correlation information, the prior distribution, and the prior knowledge of the regression parameters that are very useful for rapid adaptation. The quasi-Bayes (QB) estimation algorithm is formulated to incrementally update the hyperparameters of the TSM and regression matrices simultaneously. Experimental results showed that the proposed TSM approach is better than that of the conventional quasi-Bayes linear regression (QBLR) algorithm for a small amount of adaptation data.
본 논문에서는 컬러정보를 이용하여 교통표지판 영역을 추출하고, 추출된 이미지의 인식을 위해 오류 역전파 학습알고리즘을 적용한 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판의 후보영역을 추출한다. 후보영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 영역을 분할하고, 교통표지판 인식은 학습이 가능한 오류역전파 학습알고리즘을 이용하여 인식한다. 실험결과 제안된 시스템은 다양한 크기의 입력영상과 조명의 차이에 영향을 받지 않고 후보영역 추출과 인식에 우수한 성능이 입증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.