• Title/Summary/Keyword: Space geodesy

Search Result 263, Processing Time 0.029 seconds

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors (반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산)

  • Hong, Chang-Ki;Bae, Tae-Suk;Yi, Sangoh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.717-723
    • /
    • 2020
  • Determination of local tie vectors between the space geodetic techniques such as VLBI (Very Long Baseline Interferometer), SLR (Satellite Laser Ranging), DORIS (Doppler Orbit determination and Radiopositioning Integrated on Satellite), GNSS (Global Navigation Satellite System) is essential for combination of ITRF (International Terrestrial Reference Frame). Therefore, it is required to compute IVP (Invariant Point) position of each space geodetic technique with high accuracy. In this study, we have computed Sejong VLBI IVP position by using updated mathematical model for adjustment computation so that the improvement on efficiency and reliability in computation are obtained. The measurements used for this study are the coordinates of reflective targets on the VLBI antenna and their accuracies are set to 1.5 mm for each component. The results show that the position of VLBI IVP together with its standard deviation is successfully estimated when they are compared with those of the results from previous study. However, it is notable that additional terrestrial surveying should be performed so that realistic measurement errors are incorporated in the adjustment computation process.

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

Updated Object Extraction in Underground Facility based on Centroid (중심점 기반 지하시설물 갱신객체 추출 기술)

  • Kim, Kwagnsoo;Lee, Kang Woo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.553-559
    • /
    • 2020
  • In order to prevent subsidence in urban areas, which is a major cause of damage to aging underground facilities, an integrated underground space map is being produced for systematic management of underground facilities. However, there is a problem of delaying the update time because an unupdated underground facility object is included in the process of updating the underground space integrated map. In this paper, we proposed a method to shorten the update time of the integrated map by selecting only the updated objects required for the update process of the underground space integrated map based on the central point of the underground facilities. Through the comparison of the centroid, the number of search targets is greatly reduced to shorten the search speed, and the distance of the actual location values between the two objects is calculated whether or not the objects are the same. The proposed method shows faster performance as the number of data increases, and the updated object can be reflected in the underground space integrated map about four times faster than the existing method.

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5

  • Lim, Hyung-Chul;Seo, Yoon-Kyung;Na, Ja-Kyung;Bang, Seong-Cheol;Lee, Jin-Young;Cho, Jung-Hyun;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.

A Study of IndoorGML Automatic Generation using IFC - Focus on Primal Space - (IFC를 이용한 IndoorGML 데이터 자동 생성에 관한 연구 - Primal Space를 중심으로 -)

  • Nam, Sang Kwan;Jang, Hanme;Kang, Hye Young;Choi, Hyun Sang;Lee, Ji Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.623-633
    • /
    • 2020
  • As the time spent in indoor space has increased, the demand for services targeting indoor spaces also continues to increase. To provide indoor spatial information services, the construction of indoor spatial information should be done first. In the study, a method of generation IndoorGML, which is the international standard data format for Indoor space, from existing BIM data. The characteristics of IFC objects were investigated, and objects that need to be converted to IndoorGML were selected and classified into objects that restrict the expression of Indoor space and internal passages. Using the proposed method, a part of data set provided by the BIMserver github and the IFC model of the 21st Century Building in University of Seoul were used to perform experiments to generate PrimalSpaceFeatures of IndoorGML. As a result of the experiments, the geometric information of IFC objects was represented completely as IndoorGML, and it was shown that NavigableBoundary, one of major features of PrimalSpaceFeatures in IndoorGML, was accurately generated. In the future, the proposed method will improve to generate various types of objects such as IfcStair, and additional method for automatically generating MultiLayeredGraph of IndoorGML using PrimalSpaceFeatures should be developed to be sure of completeness of IndoorGML.

A Study on the Deriving Requirements of ARGO Operation System

  • Seo, Yoon-Kyung;Rew, Dong-Young;Lim, Hyung-Chul;Park, In-Kwan;Yim, Hong-Suh;Jo, Jung-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.643-650
    • /
    • 2009
  • Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.

The Discontinuities Extraction and Analysis of Rock Slope by 3D Image (3차원영상에 의한 암반사면의 불연속면 추출 및 분석)

  • 강준묵;김위현;박준규
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • As digital photogrammetry can acquire much three-dimensional data quickly and exactly in equal accuracy, and it has advantage that can use this in modelling, it's practical use possibility is increased in various field by collection method of data for GIS. In this study, it was intended to create 3D image that has coordinate system, and use in acquisition of position information for object. And, it was applied to discontinuities extraction and measurement of rock slope for practical use of three-dimensional image and examination of measurement accuracy. Through this, it is inspected the possibility of three-dimensional image creation and the acquisition of space information.

  • PDF

The Road Alignment Optimization Modelling of Intersection Based on GIS (GIS를 이용하여 교차로를 고려한 도로선형 최적화 모델링)

  • 김동하;이준석;강인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.341-345
    • /
    • 2003
  • This study develops modeling processes for alignment optimization considering characteristics of intersections using genetic algorithms and GIS for road alignment optimization. Since existing highway alignment optimization models have neglected the characteristics of intersections, they have shown serious weaknesses for real applications. In this paper, intersection costs include earthwork, right-of-way, pavement, accident, delay and fuel consumption costs that are sensitive and dominating to alignments. Also, local optimization of intersections for saving good alignment alternatives is developed and embedded. A highway alignment is described by parametric representation in space and vector manipulation is used to find the coordinates of intersections and other interesting points. The developed intersection cost estimation model is sufficiently precise for estimating intersection costs and eventually enhancing the performance of highway alignment optimization models. Also, local optimization of intersections can be used for improving search flexibility, thus allowing more effective intersections. It also provides a basis for extending the alignment optimization from single highways to networks. The presented two artificial examples show that the total intersection costs are substantial and sensitive to highway alignments.

  • PDF

Land Development Project Area Underground Facility Management A Plan Using GIS (GIS를 활용한 택지개발사업지구 지하시설물 관리방안)

  • 김감래;이재기;임건혁
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.329-334
    • /
    • 2003
  • The aim of this study is propriety review for underground facility surveying on development area of land for housing and efficient management. Because of integration information administration system construction of the nation and development of information technology, construction of Urban information system(UIS) to manage systematically city space is increasingly necessary We manage systematically attribute information for each lot in the development area of land lot housing that it Is connected with NGIS in order to drive gradual computerization of underground facilities and arrange the base of facility management. Review arrangement methods on development area of land for housing makes it to check safety accident of urban and to leading base of urban information. Thus, this study draw the most suitable way through analysis of driving methods and expectation effect from above facts.

  • PDF