• Title/Summary/Keyword: Space geodesy

Search Result 263, Processing Time 0.029 seconds

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Determining Spatial Neighborhoods in Indoor Space using Integrated IndoorGML and IndoorPOI data

  • Claridades, Alexis Richard;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2020
  • Indoor space has been one of the focal points for geospatial research as various factors such as increasing demands for application and demand for adaptive response in emergencies have arisen. IndoorGML (Indoor Geography Markup Language) has provided a standardized method of representing the topological aspect of micro-scale environments, with its extensive specifications and flexible applicability. However, as more real-world problems and needs demand attention, suggestions to improve this standard, such as representing IndoorPOI (Indoor Points of Interest), have arisen. Hence, existing algorithms and functionalities that we use on perceiving these indoor spaces must also adapt to accommodate said improvements. In this study, we explore how to define spatial neighborhoods in indoor spaces represented by an integrated IndoorGML and IndoorPOI data. We revisit existing approaches to combine the aforementioned datasets and refine previous approaches to perform neighborhood spatial queries in 3D. We implement the proposed algorithm in three use cases using sample datasets representing a real-world structure to demonstrate its effectiveness for performing indoor spatial analysis.

Trend Analysis of GPS Precipitable Water Vapor Above South Korea Over the Last 10 Years

  • Sohn, Dong-Hyo;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2010
  • We analyzed global positioning system (GPS)-derived precipitable water vapor (PWV) trends of the Korea Astronomy and Space Science Institute 5 stations (Seoul, Daejeon, Mokpo, Milyang, Sokcho) where Korea Meteorological Administration meteorological data can be obtained at the same place. In the least squares analysis, the GPS PWV time series showed consistent positive trends (0.11 mm/year) over South Korea from 2000 to 2009. The annual increase of GPS PWV was comparable with the 0.17 mm/year and 0.02 mm/year from the National Center for Atmospheric Research Earth Observing Laboratory and Atmospheric InfraRed Sounder, respectively. For seasonal analysis, the increasing tendency was found by 0.05 mm/year, 0.16 mm/year, 0.04 mm/year in spring (March-May), summer (June-August) and winter (December-February), respectively. However, a negative trend (-0.14 mm/year) was seen in autumn (September-November). We examined the relationship between GPS PWV and temperature which is the one of the climatic elements. Two elements trends increased during the same period and the correlation coefficient was about 0.8. Also, we found the temperature rise has increased more GPS PWV and observed a stronger positive trend in summer than in winter. This is characterized by hot humid summer and cold dry winter of Korea climate and depending on the amount of water vapor the air contains at a certain temperature. In addition, it is assumed that GPS PWV positive trend is caused by increasing amount of saturated water vapor due to temperature rise in the Korean Peninsula. In the future, we plan to verify GPS PWV effectiveness as a tool to monitor changes in precipitable water through cause analysis of seasonal trends and indepth/long-term comparative analysis between GPS PWV and other climatic elements.

Filtering Performance Analyizing for Relative Navigation Using Single Difference Carrier-Phase GPS (GPS 신호의 단일차분을 이용한 편대위성의 상대위치 결정을 위한 필터링 성능 분석)

  • Park, In-Kwan;Park, Sang-Young;Choi, Kyu-Hong;Choi, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Satellite formation flying can provide the platform for interferometric observation to acquire the precise data and ensure the flexibility for space mission. This paper presents development and verification of an algorithm to estimate the baseline between formation flying satellites. To estimate a baseline(relative navigation) in real time, EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) are used. Measurements for updating a state-vector in Kalman Filter are GPS single difference data. In results, The position errors in estimated baseline are converged to less than ${\pm}1m$ in both EKF and UKF. And as using the two types of Kalman filter, it is clear that the unscented Kalman filter shows a relatively better performance than the extended Kalman filter by comparing an efficiency to the model which has a non-linearity.

A Study on the LOD(Level of Detail) Model for Applications based on Indoor Space Data (실내공간 데이터 기반의 응용 서비스를 위한 세밀도 모델에 관한 연구)

  • Kang, Hye-Young;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.143-151
    • /
    • 2014
  • As the interest in indoor space increases, the demands for various services based on indoor space is increasing. With the demands, to construct spatial information for indoor space is also required, but there is not defined the LOD(Level of Detail) for indoor spatial data. Therefore, in this paper we classified data for indoor space data construction, and then we defined the accuracy and detail about the level of detail to provide suitable application services according to the type and representation method of each data. Most previous researches are focus on the geometrical representation, but in this paper we define a indoor LOD model based on type and representation method of data. In addition, we present applicable services with proposed LOD model and suggest a guideline for construction and application of indoor space.

Plasmaspheric contribution to the GPS TEC

  • Jee, Geon-Hwa;Lee, Han-Byul;Kim, Yong-Ha;Chung, Jong-Kyun;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.3-31
    • /
    • 2010
  • We performed a comprehensive comparison between GPS Global Ionosphere Map (GIM) and TOPEX/Jason (T-J) TEC data for the periods of 1998~2009 in order to assess the performance of GIM over the global ocean where the GPS ground stations are very sparse. Using the GIM model constructed by CODE at University of Bern, the GIM TEC values were obtained along the T-J satellite orbit at the locations and times of the measurements and then binned into various geophysical conditions for direct comparison with the T-J TECs. On the whole, the GIM model was able to reproduce the spatial and temporal variations of the global ionosphere as well as the seasonal variations. However, the GIM model was not accurate enough to represent the well-known ionospheric structures such as the equatorial anomaly, the Weddell Sea Anomaly, and the longitudinal wave structure. Furthermore, there seems to be a fundamental limitation of the model showing the unexpected negative differences (i.e., GPS < T-J) in the northern high latitude and the southern middle and high latitude regions. The positive relative differences (i.e., GIM > T-J) at night represent the plasmaspheric contribution to GPS TEC, which is maximized, reaching up to 100% of the corresponding T-J TEC values in the early morning sector. In particular, the relative differences decreased with increasing solar activity and this may indicate that the plasmaspheric contribution to the maintenance of the nighttime ionosphere does not increase with solar activity, which is different from what we normally anticipate. Among these results, the plasmaspheric contribution to the ionospheric GPS TEC will be presented in this talk and the rest of it will presented in the companion paper (poster presentation).

  • PDF

PRECIPITABLE WATER VAPOR CONDITIONS FOR INFRARED OBSERVATIONS AT KOREAN ASTRONOMICAL OBSERVATORIES (국내 천문대 상공의 수증기량 조건과 적외선 관측)

  • Lee, Sung-Ho;Baek, Jeong-Ho;Moon, Bong-Kon;Jin, Ho;Cho, Jung-Ho;Cha, Sang-Mok;Cho, Seoung-Hyun;Park, Yung-Sik;Yuk, In-Soo;Nam, Uk-Won;Pak, Soo-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • KASINICS (Korea Astronomy and Space Science Institute Near Infrared Camera System) is equipped with a InSb array which can observe $1-5\;{\mu}m$ bands in near-infrared. The absorption and emission by telluric water vapor becomes serious in the bands longer than $3\;{\mu}m$. We measured PWV (precipitable Water Vapor) levels above Bohyusan Optical Astronomy Observatory and Sobaeksan Optical Astronomy Observatory from July 2006 to August 2007 using the GPS PWV measurement system of KASI. We found that monthly averaged PWVs are lower than the prediction using dew-point temperature and as low as above Kitt Peak from September to February.

Effective 3D Inner Model Visualization for GIS Web Service (GIS 표준 웹 서비스 적용을 위한 3차원 실내모델의 효율적 시각화)

  • Jeong, Jang-Yoon;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.701-711
    • /
    • 2009
  • The inner space of building is increasingly becoming complex as urban activities increase in variety, and the actual space size also increases. This trend necessitate the utilization of three dimensional position information within the inner space of buildings. Standard GIS web service technology and visualization technology are applied to 3D inner space building data to share these information for better decision making in building related applications such as fire evacuation, facilities management and market analysis. This study aims to effectively model and visualize the three dimensional space of building interiors in the GIS aspect, and to be able to share the information through standard GIS web service. The various elements of inner model was assigned and stored into pre-designed spatial database tables respectively. GIS web server was then configured to service the database which was populated with 3D inner model data. On the client side, 3D visualization modules was developed using a 3D graphic rendering S/W engine.

A Study on the Development Cadastral Model for 3D Cadastre Registration (3차원 지적등록을 위한 모형개발에 관한 연구)

  • Kim Kam Lge;Lim Gun Hyuk;Park Se Jin;Hwang Bo Sang Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The usage of the land is enlarged with above-surface space and sub-surface space as well as surface, as the concern about the land use is increased because there are many factors like the recent development of the science technique, Rapid increase of the population, Rapid city's diffusion, industrialization. According to the cubicalness of the land usage such as these, We have the limit to register the right-objects in space like various buildings and facilities by present registration method of 2D cadastre registration because of 2D registration object. Thus, it is necessary for plan to register an ownership, other privilege relations and the physical objects like various buildings and facilities established on both surface and space. There are two steps in this study. First step is the necessity of 3D cadastre registration and object analysis of cadastre registration, second step is 3D cadastre division and its visualization. Finally, this study will present the realizable model for a 3D cadastre registration.

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF