• Title/Summary/Keyword: Space dynamics

Search Result 1,185, Processing Time 0.032 seconds

Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft

  • Yang, Jingyu;Qu, Shiying;Lin, Jiahui;Liu, Zhiqi;Cui, Xuanming;Wang, Chu;Zhang, Dujiang;gu, Mingcheng;Sun, Zhongrui;Yang, Kang;Zhou, Lanwei;Chen, Guoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.590-601
    • /
    • 2015
  • This paper gives an overview of research on the field of structure vibration-attitude coordinated control of spacecraft. First of all, the importance of the technology has been given an introduction, and then later the research progress of space structure dynamics modeling, research progress of structure vibration-attitude coordinated control of flexible spacecraft have been discussed respectively. Finally, future research on application of structure vibration-attitude coordinated control of spacecraft has been recommended.

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis (이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석)

  • 김동식;서호준;서삼준;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

Adaptive Control of Space Robot in Inertia Space (Inertia Space에서 우주 로봇의 적응제어)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.381-385
    • /
    • 1992
  • In this paper, dynamic modeling and adaptive control problems for a space robot system are discussed. The space robot consist of a robot manipulator mounted on a free-floating base where no attitude control is applied. Using an extended robot model, the entire space robot can be viewed as an under-actuated robot system. Based on nonlinear control theory, the extended space robot model can then be decomposed into two subsystems: one is input-output exactly linearizable, and the other is unlinearizable and represents an internal dynamics. With this decomposition, a normal form-augmentation approach and an augmented state-feedback control are proposed to facilitate the design of adaptive control for the space robot system against parameter uncertainty, unknown dynamics and unmodeled payload in space applications. We demonstrate that under certain conditions, the entire space robot can be represented as a full-actuated robot system to avoid the inclusion of internal dynamics. Based on the dynamic model, we propose an adaptive control scheme using Cartesian space representation and demonstrate its validity and design procedure by a simulation study.

  • PDF

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Steering the Dynamics within Reduced Space through Quantum Learning Control

  • Kim, Young-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2003
  • In quantum dynamics of many-body systems, to identify the Hamiltonian becomes more difficult very rapidly as the number of degrees of freedom increases. In order to simplify the dynamics and to deduce dynamically relevant Hamiltonian information, it is desirable to control the dynamics to lie within a reduced space. With a judicious choice for the cost functional, the closed loop optimal control experiments can be manipulated efficiently to steer the dynamics to lie within a subspace of the system eigenstates without requiring any prior detailed knowledge about the system Hamiltonian. The procedure is simulated for optimally controlled population transfer experiments in the system of two degrees of freedom. To show the feasibility of steering the dynamics to lie in a specified subspace, the learning algorithms guiding the dynamics are presented along with frequency filtering. The results demonstrate that the optimal control fields derive the system to the desired target state through the desired subspace.

Analytical Design of the Space Debris Collision Avoidance Maneuver based on Relative Dynamics (상대운동방정식 기반의 우주파편 충돌회피기동의 해석적 설계기법)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1048-1052
    • /
    • 2013
  • Recently, many countries have attempted to protect their satellites from damage caused by space debris. To design these collision avoidance maneuvers, optimal algorithms based on numerical simulations are widely used due to their practicality. However, these algorithms often require a great expenditure of time in order to find solutions. Therefore, in this paper, a simple analytical strategy is suggested to find the initial prediction required to find these numerical solutions for collision avoidance maneuvers by using relative dynamics for the rendezvous and docking problems. For this analytical strategy, the simple dynamics on the CW (Clohessy-Wiltshire) frame is adopted as an attempt to introduce an analytical solution.

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

NUMERICAL STUDY ON ELECTROPHORETIC MOTION OF A BIO-POLYMER THROUGH A NANO-PORE (나노 세공을 통한 비드 체인의 전기영동에 관한 수치해석적 연구)

  • Alapati, Suresh;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.575-580
    • /
    • 2010
  • In this work, the electrophoretic motion of dsDNA molecule represented by a polymer through an artificial nano-pore in a membrane is simulated using the numerical method combining the lattice Boltzmann and Langevin molecular dynamic method. The polymer motion is represented by Langevin molecular dynamics technique while the fluid flow is taken into account by fluctuating lattice-Boltzmann method. The hydrodynamic interactions between the polymer and solvent in a confined space with a membrane having a hole are considered explicitly through the frictional and the random forces. The electric field intensity over the space is obtained from a finite difference method. Initially, the polymer is placed at one side of the space, and an electric field is applied to drive the polymer to the other side of the space through the nano-pore. In future, we plan to study the effect of the polymer size and the electric field on the electrophoretic velocity.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.