• Title/Summary/Keyword: Space Scheduling

Search Result 213, Processing Time 0.026 seconds

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

An Operating System Design and Development for Efficient Painting Process

  • Chung, Kuy-Hoon;Baek, Tae-Hyun;Park, Ju-Chull;Cho, Kyu-Kab
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.183-187
    • /
    • 2000
  • In this study, we design a scheduling system for painting shop, called HYPOS(Hyundai heavy industry Painting shop Operating System) and develop a system implementing the design. The painting shop operations are currently scheduled manually by experts. Manual scheduling is a serious time consuming job and generally can not guarantee a full optimality. Building a traditional heuristic scheduling system lot this problem, however, is not promising because there are various kinds of constraints to be satisfied including space allocation of shipbuilding blocks in a painting cell. We, therefore, adopt a spatial scheduling approach and develop scheduling algorithms based on field-oriented scheduling heuristics and computational geometry. And we show that the algorithms can successfully be applied to the painting shop scheduling problem.

  • PDF

Canard-Leading Edge Flap Scheduling for the Maneuverability Enhancement of a Fighter Class Aircraft (전투기급 항공기 기동성 증대를 위한 카나드-앞전플랩 스케줄링)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2007
  • During the conceptual design phase of a wing-body-canard type fighter class aircraft, as a method of maneuverability enhancement for an aircraft, effects of canard-leading edge flap scheduling have been studied. In this study, corrected supersonic panel method has been used to predict the drag polar characteristics due to canard-leading edge flap deflections in the high speed regime. Utilizing the predicted drag polar curves, the canard-leading edge flap scheduling laws have been established. These scheduling laws are the relation of canard-leading edge flap deflections and the flight conditions to maximize the lift-drag ratio. Based on the results obtained from the canard-leading edge flap scheduling, the present method has shown to be useful to enhance the maneuverability of wing-body-canard type fighter class aircraft.

Multi-functional Fighter Radar Scheduling Method for Interleaved Mode Operation of Airborne and Ground Target (전투기탑재 다기능 레이다의 공대공 및 공대지 동시 운용 모드를 위한 스케줄링 기법)

  • Kim, Do-Un;Lee, Woo-Cheol;Choi, Han-Lim;Park, Joontae;Park, Junehyune;Seo, JeongJik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.581-588
    • /
    • 2021
  • This paper deals with a beam scheduling method in fighter interleaving mode. Not only the priority of tasks but also operational requirements that air-to-ground and air-to-air search tasks should be executed alternatively are established to maximize high-quality of situational awareness. We propose a real-time heuristic beam scheduling method that is advanced from WMDD to satisfies the requirements. The proposed scheduling method is implemented in a simulation environment resembling the task processing mechanism and measurement model of a radar. Performance improvement in terms of task delay time is observed.

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

Design of a Coordinating Mechanism for Multi-Level Scheduling Systems in Supply Chain

  • Lee, Jung-Seung;Kim, Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2012
  • The scheduling problem of large products like ships, airplanes, space shuttles, assembled constructions, and automobiles is very complex in nature. To reduce inherent computational complexity, we often design scheduling systems that the original problem is decomposed into small sub-problems, which are scheduled independently and integrated into the original one. Moreover, the steep growth of communication technology and logistics makes it possible to produce a lot of multi-nation corporation by which products are produced across more than one plant. Therefore vertical and lateral coordination among decomposed scheduling systems is necessary. In this research, we suggest an agent-based coordinating mechanism for multi-level scheduling systems in supply chain. For design of a general coordination mechanism, at first, we propose a grammar to define individual scheduling agents which are responsible to their own plants, and a meta-level coordination agent which is engaged to supervise individual scheduling agents. Second, we suggest scheduling agent communication protocols for each scheduling agent topology which is classified according to the system architecture, existence of coordinator, and direction of coordination. We also suggest a scheduling agent communication language which consists of three layers : Agent Communication Layer, Scheduling Coordination Layer, Industry-specific Layer. Finally, in order to improve the efficiency of communication among scheduling agents we suggest a rough capacity coordination model which supports to monitor participating agents and analyze the status of them. With this coordination mechanism, we can easily model coordination processes of multiple scheduling systems. In the future, we will apply this mechanism to shipbuilding domain and develop a prototype system which consists of a dock-scheduling agent, four assembly-plant-scheduling agents, and a meta-level coordination agent. A series of experiment using the real-world data will be performed to examine this mechanism.

Optimization of the Satellite Mission Scheduling Using Genetic Algorithms (유전 알고리즘을 이용한 위성 임무 스케줄링 최적화)

  • Han, Soon-Mi;Baek, Seung-Woo;Jo, Seon-Yeong;Cho, Kyeum-Rae;Lee, Dae-Woo;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1163-1170
    • /
    • 2008
  • A mission scheduling optimization algorithm according to the purpose of satellite operations is developed using genetic algorithm. Satellite mission scheduling is making a timetable of missions which are slated to be performed. It is essential to make an optimized timetable considering related conditions and parameters for effective mission performance. Thus, as important criterions and parameters related to scheduling vary with the purpose of satellite operation, those factors should be fully considered and reflected when the satellite mission scheduling algorithm is developed. The developed algorithm in this study is implemented and verified through a comprehensive simulation study. As a result, it is shown that the algorithm can be applied into various type of the satellite mission operations.

Scheduling for a Flexible Manufacturing Cell with Transportation Time (유연가공셀에서 운반시간을 고려한 일정계획)

  • 최정상;노인규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.107-118
    • /
    • 1994
  • This research is concerned with production scheduling for a flexible manufacturing cell which consists of two machine centers with unlimited buffer space and a single automatic guided vehicle. The objective is to develop and evaluate heuristic scheduling procedures that minimize maximum completion time. A numerical example illustrates the proposed algorithm. The heuristic algorithm is implemented for various cases by SLAM II. The results show that the proposed algorithm provides better solutions than Johnson's. It also gets good solutions to minimize mean flowtime.

  • PDF

Design and Implementation of a Simulation Framework for Wireless Data Broadcasting based on Data ID Space Partition

  • Im, Seokjin
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.10-18
    • /
    • 2018
  • For the information services supporting requests of data items from a great number of mobile clients, wireless data broadcasting is an effective way because it can accommodate any number of clients. In the wireless data broadcasting, various air indexing schemes and data scheduling schemes have been developed in order to enable the clients to access their desired data items efficiently. The broadcasting system needs a method to simulate newly designed air indexing and scheduling schemes of the system, and to evaluate the performance parameters of the schemes. In this paper, we design an expandable and efficient simulation framework for the wireless data broadcasting based on the partition of data ID space. The framework can adopt regular and irregular space partition and evaluate various performance parameters of the broadcasting system. We implement a testbed of the broadcasting system using the framework, that adopts IIP, GDI and EXP as its air indexing schemes. We simulate the system using the testbed and evaluate the performance parameters of the system. Thus, we show the efficiency and expandability of the designed and implemented framework.

Task Scheduling and Multiple Operation Analysis of Multi-Function Radars (다기능 레이더의 임무 스케줄링 및 복수 운용 개념 분석)

  • Jeong, Sun-Jo;Jang, Dae-Sung;Choi, Han-Lim;Yang, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.254-262
    • /
    • 2014
  • Radar task scheduling deals with the assignment of task to efficiently enhance the radar performance on the limited resource environment. In this paper, total weighted tardiness is adopted as the objective function of task scheduling in operation of multiple multi-function radars. To take into account real-time implementability, heuristic index-based methods are presented and investigated. Numerical simulations for generic search and track scenarios are performed to evaluate the proposed methods, in particular investigating the effectiveness of multi-radar operation concepts.