• Title/Summary/Keyword: Space Propulsion

Search Result 604, Processing Time 0.025 seconds

A study of thrust modeling of bi-propellant rocket engine (이원 추진제 로켓 엔진의 추력 모델링 연구)

  • Jeong,Hae-Seung;Kim,Yu;Ham,Mi-Suk;Park,Eung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.85-90
    • /
    • 2003
  • To control spacecraft including satellite, we should understand precisely the performance of propulsion system and the program logic with appropriate format for satellite operations. In this study, the thruster performance functions was generated by using the best curve fitting for performance data from bi-propellant thrusters. Detailed thruster performance data are, in general, company proprietary information, therefore real firing tests were performed to understand the basic characteristics of the performance curve. Experimental rocket motor utilize liquid oxygen and kerosine as propellant and designed average thrust was 100 pound.

Development of Radiation Heat Shield of Monopropellant Thruster for Spacecraft (우주비행체 단일추진제 추력기의 복사 열차폐막 개발)

  • 이균호;유명종;최준민;김수겸
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.92-98
    • /
    • 2006
  • An 1 lbf of NASA standard monopropellant thruster, MRE-1, is used for KOMPSAT (Korea Multi-Purpose Satellite) which is launched in 2006 and provides reliable and cost-effective means for attitude and maneuvering control system. The monopropellant thruster obtains required thrust by thermal decomposition process of propellant through catalyst bed. During firing, the decomposition plays a role of a heat source that may occur an excessive radiation heat transfer to peripheral structures and electronics in relatively low temperature condition.Therefore, the radiation heat shield is needed to prevent the critical radiative heat exchange between thruster and satellite during firing. This paper summarizes an overall development process of radiation heat shield from the design engineering up to the manufacturing.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

Development of a Two-Step Main Oxidizer Shut-off Valve (2단계 개방 연소기 산화제 개폐밸브 개발)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.704-710
    • /
    • 2017
  • The supply of the liquid oxygen into a rocket combustor is simply controlled by the 'on' and 'off' positions of a main oxidizer shut-off valve. However, the partially opened position of a three-position valve can control and optimize the engine start transients by regulating the liquid oxygen flow rate during the start-up of the engine. In this paper, the design and performances of a three-position pneumatic poppet valve, which is intended to be employed in liquid rocket engines, have been presented.

Status of the Solar Sail Technologies (태양돛 기술 동향)

  • Cho, Hyeong-Sun;Kim, Hak-In;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.495-504
    • /
    • 2014
  • Solar sail spacecrafts can gain propulsion using the momentum change through reflecting the photon packets of energy from the Sun. The sail slowly but continuously accelerates to accomplish a wide-range of potential missions. To develop the potential mission of the solar sail, the configuration, the film characteristics and the deployment devices should be carefully considered. In this paper, recent development and activities of the solar sail are introduced and design technology of the sail subsystem is investigated.

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Comparison of Thrust Measurement of a Supersonic Wind Tunnel (초음속 풍동의 추력 측정 방법 비교)

  • Heo, Hwan Il;Kim, Hyeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.93-99
    • /
    • 2003
  • The determination of thrust is essential in design and evaluation of a hypersonic airbreathing propulsion device. Conventional methods to determine the thrust is using thrust stand or force measurement system. However, these conventional methos are not applicable to the case where thrusts stands are impractical, such as free jet testing of engines, and model combustor. For this reason, the thrust determination method from measured pitot pressure is considered and validated. Validation of thrust determination from pitot pressures can be achieved by comparing the actual thrust from thrust stand. For validation purpose, a small-scale supersonic wind tunnel is installed on the thrust stand. Thrusts are measured while pressures are measured simulaneously. Then, the thrust from pitot pressure measurements are compared with the measured thrust and theoretical thrusts.

Studies on the improvement of driving gears quality at Inlet Guide Vane of aircraft auxiliary power unit (항공기 보조동력장치 입구안내익 구동기어의 품질개선에 관한 연구)

  • Park, Sungjae;Park, Sunwook;Suh, Jaekyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.512-519
    • /
    • 2016
  • Auxiliary Power Unit of FA-50 which provides energy other than propulsion is an important element to maintain airworthiness on aircraft. Also Inlet Guide Vane of Auxiliary Power Unit is a device that supplies appropriate airflow into the Auxiliary Power Unit after adjusting influent airflow into the load compressor. This report, based on the problems occurred the driving gears of Inlet Guide Vane, deals with cause of occurrence, troubleshooting, design improvement and result of test flight verification for FA-50 aircraft Auxiliary Power Unit lifespan.

Characteristics and Key Parameters of Dual Bell Nozzles of the DLR, Germany (독일 DLR의 듀얼 벨 노즐 특성 및 핵심 변수)

  • Kim, Jeonghoon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.952-962
    • /
    • 2015
  • Various types of altitude compensation nozzles have been investigated to develop an effective propulsion system. In order to obtain baseline data for future study of dual bell nozzles, main characteristics and key parameters of dual bell nozzles are summarized and described by analysing DLR dual bell nozzles. DLR's experimental researches show that inflection angle is proportional to transition NPR, and extension length is proportional to side load, but inversely proportional to transition NPR and transition duration. Therefore, the nozzle geometry can be determined through the performance prediction process and thus the optimization process is required to meet performance requirements between parameters.

Fast Torque Control of Surface-Mounted Permanent-Magnet Synchronous Motors using the Pole Placement Technique (극 배치 기법을 이용한 표면 부착형 영구자석 동기 전동기의 고속 토크 제어)

  • Park, Hyo-Seong;Lim, Jae-Sik;Han, Jung-Ho;Song, Joong-Ho;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1119-1124
    • /
    • 2013
  • In this paper we propose a novel torque control method for permanent magnet synchronous motors using the SVPWM (Space Vector PWM). The control law is described in the rotating d-q frame and is devised to track a given reference flux with which the reference torque is generated. The key feature of the proposed control is that it provides uniform dynamics with desired closedloop poles independent of the rotating speed and the desired poles can be selected to yield a fast response with only a small amount of torque ripple.