• Title/Summary/Keyword: Space Mission

Search Result 880, Processing Time 0.023 seconds

First Bipropellant Propulsion System for Spacecraft in Korea

  • Han, Cho-Young;Chae, Jong-Won;Park, Eung-Sik;Baek, Myung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.307-310
    • /
    • 2008
  • In the framework of COMS(Communication, Ocean and Meteorological Satellite) programme, the first bipropellant propulsion system for GEO satellite has been developed successfully. So far Korea has its own experience of development of a monopropellant propulsion system for LEO satellites, i.e., KOMPSAT's. Other types of propulsion systems for a satellite, such as cold gas and electric propulsion etc., are being developed somewhere in Korea, however they are not commercialised yet, apart from those two systems aforementioned. This paper mainly focused on the design of the Chemical Propulsion System(CPS) for the COMS, joint scientific and communications satellite. It includes descriptions of the general system design and a summary of the supporting analysis performed to verify suitability for space flight. Essentially it provides an overview and guide to the various engineering rationale generated in support of the COMS CPS design activities. The manufacture and subsequent testing of COMS CPS are briefly discussed. Feasibility of COMS CPS to an interplanetary mission is proposed as well.

  • PDF

Designing on Scenario-based Drone Platform to Enhancement Security (보안성 향상을 위한 시나리오 기반 드론 플랫폼 설계 연구)

  • Kim, Yanghoon;Hong, Chan-Ki
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.78-83
    • /
    • 2021
  • The new industry drone research is increasing through convergence between 4th industrial revolution technology. In particular, the government indicates the D.N.A platform as a countermeasure of 4th industrial revolution. So, the research topics are remarkable which are using D.N.A platform. On the other hand, the drone for industrial and research has spatial factor based on sequential because, they performance scenario-based mission through control operation. When the drone flights as a control operation, they have necessity apply multi-dimensional methods to improve the security level. So, this study researched a scenario based drone platform to improve the security level. As a result, the space classified as a ground control system, drone, drone data server and designed the application method based on scenario security technology.

A Study on the Architectural Characteristics of the Eucharistic Adoration of the Catholic Churches in Rural Areas - Analysis of Architectural Elements of Eucharistic Adoration in Catholic Church in Gwangju and Jeonnam - (농어촌지역 성당 내 성체조배실의 건축적 특성에 관한 연구 - 광주·전남지역 천주교성당의 성체조배실을 중심으로 건축 요소 분석 -)

  • Kang, Hyung-Ju;Shin, Woong-Ju
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.72-79
    • /
    • 2021
  • Religious architecture in the Gwangju and Jeonam regions played the role of local culture, and in particular, cathedral architecture maintains a consistent religious context and seeks to integrate with the local community. This study is to investigate and analyze the overall data to find out the characteristics and meaning of the Eucharistic adoration, which played a central role in the religious aspect and the space in the cathedral, and used it as basic data for the study of local cathedral architecture. The Eucharistic adoration was activated starting from the time when the Eucharist storage room was placed in the Middle Ages, and in 1979, when Pope John Paul II published a letter, and Bishop Na Gilmo of Incheon introduced the Eucharist, the Eucharistic adoration movement was activated in parishes across the country. However, regarding the Eucharistic adoration, a way to use its spatial meaning and religious use is still unknown, even to its believers. The Eucharistic adoration of the cathedral contains the main spiritual function of managing faith rather than the functions of mission, fellowship, and office work. An approach which composes the liturgical spaces in various architectural planning methods is necessary, but the fundamental and religious meaning must not be abandoned.

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.

Design of Vehicle-mounted Loading and Unloading Equipment and Autonomous Control Method using Deep Learning Object Detection (차량 탑재형 상·하역 장비의 설계와 딥러닝 객체 인식을 이용한 자동제어 방법)

  • Soon-Kyo Lee;Sunmok Kim;Hyowon Woo;Suk Lee;Ki-Baek Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • Large warehouses are building automation systems to increase efficiency. However, small warehouses, military bases, and local stores are unable to introduce automated logistics systems due to lack of space and budget, and are handling tasks manually, failing to improve efficiency. To solve this problem, this study designed small loading and unloading equipment that can be mounted on transportation vehicles. The equipment can be controlled remotely and is automatically controlled from the point where pallets loaded with cargo are visible using real-time video from an attached camera. Cargo recognition and control command generation for automatic control are achieved through a newly designed deep learning model. This model is designed to be optimized for loading and unloading equipment and mission environments based on the YOLOv3 structure. The trained model recognized 10 types of palettes with different shapes and colors with an average accuracy of 100% and estimated the state with an accuracy of 99.47%. In addition, control commands were created to insert forks into pallets without failure in 14 scenarios assuming actual loading and unloading situations.

Research on Cyber Kill Chain Models for Offensive Cyber Operations (공세적 사이버 작전을 위한 사이버 킬체인 모델 연구)

  • Seong Bae Jo;Wan Ju Kim;Jae Sung Lim
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.71-80
    • /
    • 2023
  • Cyberspace has emerged as the fifth domain of warfare, alongside land, sea, air, and space. It has become a crucial focus for offensive and defensive military operations. Governments worldwide have demonstrated their intent to engage in offensive cyber operations within this domain. This paper proposes an innovative offensive cyber kill chain model that integrates the existing defensive strategy, the cyber kill chain model, with the joint air tasking order (ATO) mission execution cycle and joint target processing procedure. By combining physical and cyber operations within a joint framework, this model aims to enhance national cyber operations capabilities at a strategic level. The integration of these elements seeks to address the evolving challenges in cyberspace and contribute to more effective jointness in conducting cyber operations.

Child health promotion program in South Korea in collaboration with US National Aeronautics and Space Administration: Improvement in dietary and nutrition knowledge of young children

  • Lim, Hyunjung;Kim, JiEun;Wang, Youfa;Min, Jungwon;Carvajal, Nubia A.;Lloyd, Charles W.
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.555-562
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Childhood obesity has become a global epidemic. Development of effective and sustainable programs to promote healthy behaviors from a young age is important. This study developed and tested an intervention program designed to promote healthy eating and physical activity among young children in South Korea by adaptation of the US National Aeronautics and Space Administration (NASA) Mission X (MX) Program. SUBJECTS/METHODS: The intervention program consisted of 4 weeks of fitness and 2 weeks of nutrition education. A sample of 104 subjects completed pre- and post- surveys on the Children's Nutrition Acknowledgement Test (NAT). Parents were asked for their children's characteristics and two 24-hour dietary records, the Nutrition Quotient (NQ) at baseline and a 6-week follow-up. Child weight status was assessed using Korean body mass index (BMI) percentiles. RESULTS: At baseline, 16.4% (boy: 15.4%; girl: 19.2%) of subjects were overweight or obese (based on $BMI{\geq}85%tile$). Fat consumption significantly decreased in normal BMI children ($48.6{\pm}16.8g$ at baseline to $41.9{\pm}18.1g$ after intervention, P < 0.05); total NQ score significantly increased from 66.4 to 67.9 (P < 0.05); total NAT score significantly improved in normal BMI children (74.3 at baseline to 81.9 after the program), children being underweight (from 71.0 to 77.0), and overweight children (77.1 at baseline vs. 88.2 after intervention, P < 0.001). CONCLUSIONS: The 6-week South Korean NASA MX project is feasible and shows favorable changes in eating behaviors and nutritional knowledge among young children.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

Falcon 9 Type Korean RLV and GTO-LV Mission Design (Falcon 9 방식의 한국형 재사용 발사체 및 정지궤도 발사체 임무설계)

  • Lee, Keum-Oh;Seo, Daeban;Lim, Byoungjik;Lee, Junseong;Park, Jaesung;Choi, Sujin;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.32-42
    • /
    • 2022
  • The strategy to develop a launch vehicle family by bundling multiple rocket engines of a single type has been proven by SpaceX and their reusable fleet comprised of Falcon 9 and Falcon Heavy. In this study, we revisit a potential launch vehicle family out of a 35 tonf-class methalox staged combustion cycle engine and evaluate their utility and performance in various space missions. For example, a Korean version of Falcon 9 can deliver 4.7 tons of payload into 500 km SSO in an expendable mode while the payload is reduced to 2.16 tons in a sea-landing reusable mode. A Korean version of Falcon Heavy can deliver 4.4 tons into GTO when launched from the Naro Space Center, indicating that this common booster core configuration can handle Cheollian 2 albeit the high inclination. Once developed, the same methaloax engine can power the first-stage of smallsat launch vehicles and air launch vehicles.

Development of A CanSat System Applying High Agility Camera and Remote Control Camera (고기동 안정화 카메라 및 원격제어 셀프카메라를 적용한 캔위성 시스템 개발)

  • Kim, Su-Hyeon;Park, Jae-Hyeon;Kim, Hye-In;Bea, Gi-Sung;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.86-96
    • /
    • 2018
  • The High Agility and Remote Control Camera System Can-Satellite ($HA+RC^2S$ CanSat) proposed in this study is a satellite designed by the authors of this work and submitted as an entry in the 2017 CanSat competition in Goheung gun, Jeonnam, Korea. The primary mission of this work is to develop a high agility camera system (HACS) that can obtain high quality images in the air. This objective is achieved by using a tuned mass damper (TMD) to attenuate the residual vibration that occurs immediately after rotating the camera. The secondary objective is to obtain a self-image of CanSat in the air using a remote control self-camera system (RCSS) that is wirelessly controlled using a joystick from a ground station. This paper describes the development process of the $HA+RC^2S$ CanSat, including mission definition, system design, manufacturing, function and performance tests carried out on the ground, and final launch test.