• Title/Summary/Keyword: Soybean yield

Search Result 908, Processing Time 0.026 seconds

Yield Response of Soybean to Drought Stress under Different Fertilizer Level

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Koh, Mun-Hwan;Kim, Young-Sook;Lee, Kyung-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.231-236
    • /
    • 2013
  • This study was conducted to investigate the yield response of soybean to drought stress in 1984 and 1986 at the experiment field of the National Academy of Agricultural Science using experiment plots with different soil water tension and fertilizer levels. The average yield response factor (YRF) of soybean to evapotranspiration (ET) calculated as [(Ya/Ym)/(ETa/ETm)], where Ya, average yield; Ym, maximum yield; ETa, average ET; and ETm, maximum ET, was 0.91 with the range from 0.74 to 1.16. Relationship between yield index (YI=[Ya/Ym]) and evapotranspiration index (ETI=[ETa/PET]) was $YI=0.87{\cdot}(ETI)+0.09$. Relationship between YI and the maximum soil water tension (Hmax) was $YI=1.23-0.23{\cdot}{\log}$ (Hmax). Relationship between YI and the days of drought stressed (Dr) was $YI=0.877{\cdot}{\exp}$ ($-0.01{\cdot}Dr$). The relation between YI and fertilizer level (F) was $YI=-0.21{\cdot}F2+0.36{\cdot}F+0.33$, under very serious drought condition as the maximum soil water tension was 0.3 MPa.

Agronomic performance of 20 soybean recommended varieties in Korea

  • Kim, Yong-Ho
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.206-210
    • /
    • 2000
  • A total of 20 soybean recommended varieties which were developed until late 1980's in Korea was evaluated at Suwon. Comprehensive evaluation and correlation analysis were conducted on the agronomic characters. Great variations were found in these genotypes for branch number, pod number, and grain yield per plant. The variation in number of pods/plant ranged from 53 to 164, and in grain yield from 25.9 to 68.8 g. The coefficient of variation for most of the characters had a wide range. In correlation coefficient, grain yield per plant showed a positive phenotypic association with weight of pods, pod number of branches, and weight of stem. Multiple regression analysis was done to formulate selection criteria. It indicated that stout and medium-stature genotypes with more branches, resulting in varieties with more pods per plant but with medium-size seeds are available to obtain high-yielding varieties.

  • PDF

Comparison of Soybean Varieties for Yield, Chemical and Sensory Properties of Soybean Curds (콩 품종에 따른 두부의 수율 및 화학적, 관능적 특성의 비교)

  • Chang, Cheon-Il;Lee, Jung-Kun;Ku, Kyung-Hyung;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.439-444
    • /
    • 1990
  • Fourteen varieties of soybeans grown in Korea were investigated for their chemical composition, yields and organoleptic properties of soybean curd. The soybean curd was prepared by soaking, grinding and heating of soybeans followed by filtration, coagulation with $CaSO_4$ and pressing. The proximate analysis showed that soybean curd had the moisture content of $75.0{\sim}82.0%\;and\;48.6{\sim}56.1%\;protein,\;14.8{\sim}40.4%\;lipids\;and\;6.4{\sim}26.8%$ carbohydrate by dry weight basis. The yield of volume total solids and protein from 100g of soybeans were $182.2{\sim}227.5cm^3,\;42.65{\sim}55.60%\;and\; 57.90{\sim}76.50%$, respectively. Among the 14 varieties, the highest volume yield was obtained from Suwon-141 which has the highest contents of moisture, carbohydrate and the lowest in lipids of soybean curd. The curd prepared with Baegun and Jangyeob contained relatively low values in moisture, protein and carbohydrate and yielded the lowest in volume yield. Therefor moisture, protein and carbohydrate contents in soybean curd affected greatly on volume yield. The organoleptic properties of odor and taste couldn't find any significant relationship with chemical composition of soybean curd eventhough there were some difference in their intensities among varieties.

  • PDF

Yield Potentials of Rice and Soybean As Affected by Cropping Systems in Mid-mountainous Paddy Soils of Korea

  • Kang, Ui-Gum;Choi, Jong-Seo;Kim, Jeong-Ju;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.259-274
    • /
    • 2017
  • To get some informations for sustainable paddy use, the productivities of soils with two years of cropping systems were estimated through pot experiment using two pretreated groups of not autoclaved 'natural'- and 'autoclaved'-soils without any fertilization. And then the relationship between the productivities, called yield potentials, and the characteristics of soils as affected by cropping systems, such as rice-rice (R-R), ricebarley-rice-barley (R-B-R-B), rice-barley-rice-wheat (R-B-R-W), soybean-barley-soybean-barley (S-B-S-B), of which barley and wheat were composted at a level of $10MT\;ha^{-1}$, and S-B-S-B without compost, was analyzed. These treatments were established in mid-mountainous loam paddy, which contained exchangeable Ca of $11.8cmol_c\;kg^{-1}$, located at the altitude of 285 m above sea level in Sangju of Korea. Crops for the estimation of soil productivity were rice cv. 'Seolemi' and soybean cv. 'Chamol'. As a result, under the natural soils condition, rice grain and straw were highly produced in composted S-B-S-B soils (p < 0.05) and lowly in R-R soils (p < 0.05). While soybean grain and stem were higher in R-R soils (p < 0.05) than other soils which not significantly different each other. In case of autoclaved soils, the yield potentials of rice and soybean were high together in either composted R-B-R-B/W or S-B-S-B soils compared to R-R and uncomposted S-B-S-B soils (p < 0.05). In especial, these yield potentials under the natural soils condition were commonly influenced by soil porosity showing negative correlation for rice (p < 0.01); positive for soybean (p < 0.05). And the porosity possibly reversed even the symbiotic contribution of indigenous Bradyrhizobium japonicum for soybean. Under autoclaved soils condition the potentials of rice and soybean showed negative correlations with soil C:N ratio (p < 0.05) similarly to the case of rice in the natural soils.

Influence of Disease Severity of Bacterial Pustule Caused by Xanthomonas axonopodis pv. glycines on Soybean Yield (콩 불마름병 발생정도가 수량에 미치는 영향)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Lee, Bong-Choon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.317-325
    • /
    • 2011
  • Bacterial pustule of soybean (Glycine max) caused by Xanthomonas axonopodis pv. glycines is one of the most prevalent bacterial diseases of soybean in Korea, where it causes considerable yield loss. This study was carried out to develop yield prediction model for bacterial pustule by analyzing correlation between the percentage of diseased leaf area and yield. The severe disease incidence of soybean bacterial pustule caused yield losses by 19.8% in 2006 and 16.8% in 2007, respectively. Severity of bacterial pustule greatly affected on 100 seed weight and yield, but did not on stem length, number of branches per plant, number of pods per plant, number of seeds per plant. On the other hand, correlation coefficients between diseased leaf area and yield were $-0.93^*$('06) and $-0.77^*$('07), respectively. The regression equation obtained by analyzing correlation between the percentage of diseased leaf area and yield loss in 2006 and in 2007 was y = -3.2914x + 348.19($R^2$ = 0.8603) and y = -2.9671x + 302.08($R^2$ = 0.9411), respectively. These results will be helpful in estimating losses on a field-scale and thereby predicting the production of soybean.

Comparison of Yield in Aiternating Crop System Mixed of Tillering Hybrid Corn and Soybean (분얼형(分蘖型) 옥수수 교잡종(交雜種)과 대두(大豆)의 교호작(交互作)에 대한 수량(收量) 비교(比較) 시험(試驗))

  • Lee, Hee Bong;Choe, Bong Ho;Lee, Won Koo;Park, Ki Sun;Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.117-124
    • /
    • 1993
  • This study was conducted to determine the effects of alternating planting systems of soybean and tillering hybrid corn on yield of both crops. The planting systems included monocultures of both crops. 1 to 1 row ratio, 1 to 2 row ratio, 1 to 3 row ratio, 2 to 1 row ratio, 2 to 3 row ratio, 3 to 1 row ratio, 3 to 2 row ratio and 3 to 3 row ratio of soybean and corn. The results obtained are summarized as follows : The plant height of soybean was increased as the number of planting rows of corn increased. But the plant, height of soybean was quite stabilized when the ratio of soybean planting rows increased. When the plant height of soybean was increased due to the increased row number of corn, the branch number and diameter of soybean decreased and lodging ratio increased. Total fresh weight of soybean per 10a was decreased as the ratio of soybean planting decreased and it was increased when the ratio of soybean planting increased over monoculture of soybean. Dry weight of soybean per 10a showed the same tendency of the fresh weight. But the highest grain yield of soybean was obtained in the monoculture of soybean and it was 276 kg/10a. Comparatively high yield of soybean was obtained in the systems of 2 to 1 and 3 to 3 ratios. The plant height, number of tillers and number of ears per plant of tillering corn were greatly affected by the alternating planting of soybean and they were 208.9cm, 2.1 and 4 per plant, respectively. The fresh and dry weights and yield of corn per 10a showed significant differences among systems. The average fresh and dry weight of corn in the systems of 3 to 1 and 2 to 1 were 1000 kg and 100 kg higher than those of monoculture of corn. The kernel yields of corn per 10a were 438 kg in the monoculture system and 530 kg in the systems of 3 to 2 and 2 to 1. The total fresh weights of corn and soybean in systems of 3 to 1, 3 to 2 and 2 to 1 were higher than 5721 kg of soybean and 4358 kg of corn in the monoculture. Combined dry weight was high in the order of monoculture, 2 to 1 and 3 to 1 row ratios. Combined grain yield was high in the systems of 2 to 1 and 3 to 1 row ratios and it was over 430 kg per 10a.

  • PDF

Current Researches on Resistance to Soybean Cyst Nematode and Prospects (콩 씨스트 선충 저항성 연구현황과 전망)

  • Kim, Dong-Gun;Kim, Yong-Chul;Kim, Sun-Tae;Ko, Byong-Gu;Han, Won-Hyung;Park, Young-Hoon;Choi, In-Soo
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.101-111
    • /
    • 2012
  • Soybean cyst nematode(SCN) (Heterodera glycines Ichinohe) causes the greatest yield loss to soybean compared to any other pest worldwide. Yield loss due to SCN is estimated 7.6 million megagrams in the USA and nearly 9 million worldwide. SCN causes yield reductions by feeding on plant nutrients, retarding root growth, and inhibiting Bradyrhizpbium japonicum(Kirchner) Buchanan nodulation. The primary methods for controlling SCN include planting resistant cultivars and rotation with nonhost crops. Genetically diverse field populations of SCN combined with the limited germplasm base of commercial soybean for resistance could potentially leads to population shifts over time, and this makes controlling H. glycines more difficult. This paper reviewed the importance of soybean, soybean cyst nematode, researches on resistance to SCN, and prospects. Tremendous effort must still be endeavored for elucidating resistance mechanisms and managing H. glycines in the soybean field.

Effect of Seeding Dates on Growth Characteristics and Dry Matter Yield at Intercropping Cultivation of Sorghum $\times$ Sudangrass Hybrid and Soybean (수수 $\times$ 단그라스 교잡종과 대두와의 간작재배시 파종시기가 생육특성 및 수량성에 미치는 영향)

  • 이상무;류영우;전병태
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.2
    • /
    • pp.177-186
    • /
    • 1997
  • A field experiment was conducted to evaluate growth characteristics, dry matter yield and crude protein yield according to different planting dates at sorghum $\times$ sudangrass hybrid(SSH) and soybean intercropping. Planting dates were five treatment of may 6(Tl), may 13(T2), may 20(T3), may 27(T4) and june 3(T5), and cutting frequency was two times a year. 1. Plant length of SSH was the highest at T2 as 253cm, but T5 was the shortest as 203cm. In the soybean, T3 and T4 were the highest as 113cm, respectively. Leaf length of SSH was high at T5. In the soybean, T2 was the highest as 17cm. Average leaf width of T2, T3 and T4 was higher than TI and T5. 2. Leaf number of T3(SSH and soybean) was higher than other treatments, Stem diameter of SSH and soybean showed the highest as 12.3mm and 8.6mrn at T5 and T3, respectively. In the SSY mean stem hardness of TI was the highest as 2.5kg/$cm^2$, but soybean was the highest at T1(8.0kg/$cm^2$) 3. Deed stubble according to move seeding date of SSH were 11.4 percentage at TI, and 3.9 percentage at T5 treatment. 4. Total dry matter yield according to move seeding date was the highest at T3 as 20,937kghq but T5 of late seeding was the lowest as 16,04Okgha(P < 0.05). 5. In the first cutting time, protein content of SSH was the highest at T3 as 9.9 percentage, but T1 was the lowest as 8.4 percentage. In the 2nd cutting, T5 was the highest as 8.7% but T1 was the lowest as 6.2%. In the soybean, T5 was the highest as 19.4% but TI of early seeding was the lowest as 16.2 percentage. Crude protein yield was the highest at T3 as 2,233.5kghq but TI of early seeding was the lowest as 1,579.7kgha (P < 0.05). As mentioned above the results, T2(may 13), T3(may 20) and T4(may 27) treatment could be recommended as the best suitable seeding date when drymatter and protein yield were considered.

  • PDF

Impact of Climate Change on Yield and Canopy Photosynthesis of Soybean (RCP 8.5 기후변화 조건에서 콩의 군락 광합성 및 수량 반응 평가)

  • Wan-Gyu, Sang;Jae-Kyeong, Baek;Dongwon, Kwon;Jung-Il, Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2022
  • Changes in air temperature, CO2 concentration and precipitation due to climate change are expected to have a significant impact on soybean productivity. This study was conducted to evaluate the climate change impact on growth and development of determinate soybean cultivar in the southern parts of Korea. The high temperature during vegetative period, which does not accompany the increase of CO2 concentration, increased the canopy photosynthetic rate in soybean, but after flowering, the high temperature above the optimal ranges interrupts the photosynthetic metabolism. In yield and yield components, high temperature reduced both the pod and seed number and single seed weight, resulting in a reduction of total seed yield. On the other hand, the increase in CO2 concentration dramatically increased the canopy photosynthetic rate over the whole growth period. In addition, high CO2 concentration increased the number of pods and seeds, which had a positive effect on total seed yield. Under concurrent elevation of air temperature and CO2 concentration, canopy photosynthesis increased significantly, but enhanced canopy photosynthesis did not lead to an increase in soybean seed yield. The increase in biomass and branch by enhanced canopy photosynthesis seems to be attributed to an increase in the total number of pods and seeds per plant, which compensates for the negative effects of high temperature on pod development. However, Single seed weight tended to decrease rapidly by high temperature, regardless of CO2 concentration level. Elevated CO2 concentration did not compensate for the poor distribution of assimilations from source to sink caused by high temperature. These results show that the damage of future soybean yield and quality is closely related to high temperature stress during seed filling period.

Genotype-Environment Interaction and Stability Analysis for Yield and Yield Contributing Characters in Soybean(Glycine max L.)

  • Islam, Mohammad Saiful;Newaz, Muhammad Ali;Islam, Md. Jahidul;Heo, Seong-Il;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.6
    • /
    • pp.504-510
    • /
    • 2007
  • GE interaction is the expression of differential genotypic adaptation across environments. GE interactions through different stability parameters and performance of the traits of genotypes were studied. The traits were days to maturity, pod length, number of pods/ plant, 100-seed weight and seed yield/plant in ten soybean genotypes across five environments. Significant differences were observed for genotypes, environments and GE interactions. Stability analysis after Eberhart and Russell's model suggested that the genotypes used in this study were all more or less responsive to environmental changes. Most of the genotypes perform better in Env.3. Based on phenotypic indices(Pi), regression ($S^2di$) genotype Garurab was found fairly stable for days to maturity. BS-23 and G-2120 may be considered as stable genotype for pod length. All the genotypes except G-2120 showed that the genotypes were relatively unstable under environmental fluctuation for the number of pod/plant. Genotype BS-23 was found most stable among all the genotypes for 100-seed weight. BS-3 and Gaurab was the most stable and desirable genotypes for seed yield in soybean.