• Title/Summary/Keyword: South sea

Search Result 2,500, Processing Time 0.027 seconds

A Study on the Emergence Period and Geographic Distribution of Cicadinae (Hemiptera: Cicadidae) in Korea Using Bioacoustic Detection Technique (생물음향 탐지기법을 이용한 한국 매미아과의 출현 시기 및 서식지 분포 특성 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.594-600
    • /
    • 2021
  • The purpose of this study is to observe the period of mating calls of cicadas in South Korea to identify the emergence period and geographic distribution for each cicada species. The study sites were 19 protection areas nationwide. The mating calls of cicadas were collected over the 12 months of 2019. A bioacoustics measuring device was installed to record the mating calls of cicadas in WAV, 44,100Hz format for 1 minute every hour. The temperature was recorded once or twice every hour using a micro-meteorological measuring device. Nine species of Korean cicadinae were studied. The start and end periods of mating calls were recorded for each cicada species for the subsequent analysis. The analysis results showed that nine cicada species appeared in the 19 protection areas. The chronological order of mating call periods for each species was as follows: Cryptotympana atrata (7/12 - 9/30), Meimuna opalifera (7/27 - 10/20), Hyalessa fuscata (7/25 - 10/9), Graptopsaltria nigrofuscata (7/28 - 9/5), Platypleura kaempferi (7/3 - 9/29), Suisha coreana (9/14 - 10/30), Leptosemia takanonis (6/26 - 8/2), Auritibicen intermedius (7/27 - 9/28), and Meimuna mongolica (8/8 - 9/11). The mating call period was between 35 (Meimuna mongolica) and 89 (Platypleura kaempferi) days, with the average being 62 days. The elevation above sea level for the habitats of each species was as follows: 5 - 386 m for Cryptotympana atrata, 7 - 759 m for Meimuna opalifera, 7 - 967 m for Hyalessa fuscata, 42 - 700m for Graptopsaltria nigrofuscata, 7 - 700 m for Platypleura kaempferi, 5 - 759 m for Suisha coreana, 7 - 759 m for Leptosemia takanonis, 397 - 967 m for Auritibicen intermedius, and 7 - 42 m for Meimuna mongolica. The average temperature of the habitats of each species was as follows: 23.9℃ for Cryptotympana atrata, 21.8℃ for Meimuna opalifera, 22℃ for Hyalessa fuscata, 23℃ for Graptopsaltria nigrofuscata, 22.9℃ for Platypleura kaempferi, 14.6℃ for Suisha coreana, 20.6℃ for Leptosemia takanonis, 19.3℃ for Auritibicen intermedius, and 24.4℃ for Meimuna mongolica. In terms of the habitat distribution of species, Meimuna opalifera, Hyalessa fuscata, and Platypleura kaempferi were distributed in more than 15 protection sites. Cryptotympana atrata was distributed in the lowlands in the southwest. Graptopsaltria nigrofuscata was distributed in the western area of the Korean Peninsula. Suisha coreana was distributed in areas excluding high mountain areas and parts of the southeast area. Leptosemia takanonis was distributed in areas near the mountains. Auritibicen intermedius was distributed locally in the high mountain areas. Meimuna mongolica was distributed locally in flat wetlands.

Study on the Trend of Aggregate Industry (국내외 골재산업 동향 연구)

  • Kwang-Seok Chea;Namin Koo;Young Geun Lee;Hee Moon Yang;Ki Hyung Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Aggregate is used to produce stable materials like concrete and asphalt and is fundamental to meet the social needs of housing, industry, road, energy and health. A total of 42.35 billion tons of aggregate were produced in 2021 worldwide, an increase of 0.91% compared to the previous year. Among them, 2 billion tons were produced in China, India, European Union and United States, making up to 71.75% of the share. South Korea has witnessed a constant increase in aggregate production, overtaking Mexico and Japan for seventh place with 390 million tons and 0.85% of the share. The industrial sand and gravel produced globally amounted to 352.66 million tons. The top seven countries with the highest production were China, United States, Netherlands, Italy, India, Turkey and France, and their production exceeded 10 million tons and held a share of 74.69%. Exports of natural rock recorded $21.68 billion in 2021, increased by $2.3 billion compared to the previous year, while exports of artificial rock increased by $2.66 billion to $13.59 billion. Exports of sand reached $1.71 billion with United States, Netherlands, Germany and Belgium being the four countries with the highest exports of sand. The four countries exported more than $100 million in sand and took up 57.70% of the total amount. Exports of gravel totaled $2.75 billion, with China, Norway, Germany, Belgium, France and Austria in the lead, making up to 48.30% of the total share. The aggregate quarry started to surge in the 1950s due to the change in people's lifestyle such as population growth, urbanization and infrastructure delvelopment. Demand for aggregate is also skyrocketing to prevent land reclamation and flood caused by sea-level rise. Demand for aggregate, which was around 24 gigatons in 2011, is expected to double to 55 gigatons in 2060. However, it is likely that aggregate extraction will heavily damage the ecosystem and the world will eventually face a shortage of aggregate followed by tense social conflict.

Introduction to the Benthic Health Index Used in Fisheries Environment Assessment (어장환경평가에 사용하는 저서생태계 건강도지수(Benthic Health Index)에 대한 소개)

  • Rae Hong Jung;Sang-Pil Yoon;Sohyun Park;Sok-Jin Hong;Youn Jung Kim;Sunyoung Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.779-793
    • /
    • 2023
  • Intensive and long-term aquaculture activities in Korea have generated considerable amounts of organic matter, deteriorating the sedimentary environment and ecosystem. The Korean government enacted the Fishery Management Act to preserve and manage the environment of fish farms. Based on this, a fisheries environment assessment has been conducted on fish cage farms since 2014, necessitating the development of a scientific and objective evaluation method suitable for the domestic environment. Therefore, a benthic health index (BHI) was developed using the relationship between benthic polychaete communities and organic matter, a major source of pollution in fish farms. In this study, the development process and calculation method of the BHI have been introduced. The BHI was calculated by classifying 225 species of polychaetes appearing in domestic coastal and aquaculture areas into four groups by linking the concentration gradient of the total organic carbon in the sediment and the distributional characteristics of each species and assigning differential weights to each group. Using BHI, the benthic fauna communities were assigned to one of the four ecological classes (Grade 1: Normal, Grade 2: Slightly polluted, Grade 3: Moderately polluted, and Grade 4: Heavily polluted). The application of the developed index in the field enabled effective evaluation of the Korean environment, being relatively more accurate and less affected by the season compared with the existing evaluation methods like the diversity index or AZTI's Marine Biotic Index developed overseas. In addition, using BHI will be useful in the environmental management of fish farms, as the environment can be graded in quantified figures.

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

Possibility of Establishing an International Court of Air and Space Law (국제항공우주재판소의 설립 가능성)

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.2
    • /
    • pp.139-161
    • /
    • 2009
  • The idea of establishing an International Court of Air and Space Law (hereinafter referred to ICASL) is only my academic and practical opinion as first proposal in the global community. The establishment of the International Court of Air and Space Law can promote the speed and promote fairness of the trial in air and space law cases. The creation of an ICASL would lead to strengthening of the international cooperation deemed essential by the global community towards joint settlement in the transnational air and space cases, claims and would act as a catalyst for the efforts and solution on aircraft, satellite and space shuttle's accidents and cases and all manpower, information, trial and lawsuit to be centrally managed in an independent fashion to the benefit of global community. The aircraft, satellite and spacecraft's accidents attributes to the particular and different features between the road, railway and maritime's accidents. These aircraft, satellite and spacecraft's accidents have incurred many disputes between the victims and the air and space carriers in deciding on the limited or unlimited liability for compensation and the appraisal of damages caused by the aircraft's accidents, terror attack, satellite, space shuttle's accidents and space debris. This International Court of Air and Space Law could hear any claim growing out of both international air and space crash accidents and transnational accidents in which plaintiffs and defendants are from different nations. This alternative would eliminate the lack of uniformity of decisions under the air and space conventions, protocols and agreements. In addition, national courts would no longer have to apply their own choice of law analysis in choosing the applicable liability limits or un-limit for cases that do not fall under the air and space system. Thus, creation of an International Court of Air and Space Law would eliminate any disparity of damage awards among similarly situated passengers and shippers in nonmembers of air and space conventions, protocols, agreements and cases. Furthermore, I would like to explain the main items of the abovementioned Draft for the Convention or Statute of the International Court of Air and Space Law framed in comparison with the Statute of the International Court of Justice, the Statue of the International Tribunal for the Law of the Sea and the Statute of the International Criminal Court. First of all, in order to create the International Court of Air and Space Law, it is necessary for us to legislate a Draft for the Convention on the Establishment of the International Court of Air and Space Law. This Draft for the Convention must include the elected method of judges, term, duty and competence of judge, chambers, jurisdiction, hearing and judgment of the ICASL. The members of the Court shall be elected by the General Assembly and Council of the ICAO and by the General Assembly and Legal Committee of the UNCOPUOS from a list of persons nominated by the national groups in the six continent (the North American, South American, African, Oceania and Asian Continent) and two international organization such as ICAO and UNCOPUOS. The members of the Court shall be elected for nine years and may be re-elected as one time. However, I would like to propose a creation an International Court of Air and Space Law in extending jurisdiction to the International Court of Justice at the Hague to in order to decide the air and space convention‘s cases. My personal opinion is that if an International Court on Air and Space Law will be created in future, it will be settled quickly and reasonably the difficulty and complicated disputes, cases or lawsuit between the wrongdoer and victims and the injured person caused by aircraft, satellite, spacecraft's accidents or hijacker and terrorists etc. on account of deciding the standard of judgment by judges of that’s court. It is indeed a great necessary and desirable for us to make a new Draft for the Convention on a creation of the International Court of Air and Space Law to handle international air and space crash litigation. I shall propose to make a new brief Draft for the Convention on the Creation of an International Court of Air and Space Law in the near future.

  • PDF

Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula (한반도 권역별 대기 중 입자상 탄소 특성 연구)

  • Lee, Yeong-jae;Park, Mi-kyung;Jung, Sun-a;Kim, Sun-jung;Jo, Mi-ra;Song, In-ho;Lyu, Young-sook;Lim, Yong-jae;Kim, Jung-hoon;Jung, Hae-jin;Lee, Sang-uk;Choi, Won-Jun;Ahn, Joon-young;Lee, Min-hee;Kang, Hyun-jung;Park, Seung-myeong;Seo, Seok-jun;Jung, Dong-hee;Hyun, Joo-kyeong;Park, Jong-sung;Hwang, Tae-kyung;Hong, You-deog;Hong, Ji-hyung;Shin, Hye-jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.330-344
    • /
    • 2015
  • Semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon were made for the period of January to October 2014, at six national air monitoring stations in Korea. OC and EC concentrations showed a clear seasonal variation with the highest in winter (January) and the lowest in summer (August). In winter, the high carbonaceous concentrations were likely influenced by increased fuel combustion from residential heating. OC and EC concentrations varied by monitoring stations with 5.9 and $1.7{\mu}g/m^3$ in Joongbu area, 4.2 and $1.2{\mu}g/m^3$ in Honam area, 4.0 and $1.3{\mu}g/m^3$ in Yeongnam area, 3.7 and $1.6{\mu}g/m^3$ in Seoul Metropolitan area, 3.0 and $0.8{\mu}g/m^3$ in Jeju Island, 2.9 and $0.7{\mu}g/m^3$ in Baengnyeong Island respectively. The concentrations of OC and EC comprised 9.6~ 15.5% and 2.4~ 4.7% of $PM_{2.5}$. Urban Joongbu area located adjacent to the intersection of several main roads showed the highest carbon concentration among six national air monitoring station. On the other hand, background Baengnyeong Island showed the lowest carbon concentration and the highest OC/EC ratio (4.5). During the haze episode, OC and EC were enhanced with increase in $PM_{2.5}$ about 1.3~ 3 and 1.3~ 4.0 times respectively. The concentrations of OC, EC in the Asian dust case are about 1~ 2.4 times greater than in the nondust case. The origins of air mass pathways arriving at Seoul, using the backward trajectory analysis, can be mostly classified into 6 groups (Sector I Northern Korea including the sea of Okhotsk, Sector II Northern China including Mongolia, Sector III Southern China, Sector IV South Pacific area, Sector V Japan, Sector VI Southern Korea area). When an air mass originating from northern China and Mongolia, the OC concentrations were the most elevated, with a higher OC/EC ratio (2.4~ 3.3), and accounting for 17% of $PM_{2.5}$ mass on average.

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

The Study on the Debris Slope Landform in the Southern Taebaek Mountains (태백산맥 남부산지의 암설사면지형)

  • Jeon, Young-Gweon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.77-98
    • /
    • 1993
  • The intent of this study is to analyze the characteristics of distribution, patter, and deposits of the exposed debris slope landform by aerial photography interpretation, measure-ment on the topographical maps and field surveys in the southern part Taebaek mountains. It also aims to research the arrangement types of mountain slope and the landform development of debris slopes in this area. In conclusion, main observations can be summed up as follows. 1. The distribution characteristics 1)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of intrusive rocks with the talus line. 2)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of inrtusive rocks with the talus line. 2) From the viewpoint of distribution altitude, talus is mainly distributed in the 301~500 meters part above the sea level, while the block stream is distributed in the 101~300 meters part. 3) From the viewpoint of slope oriention, the distribution density of talus on the slope facing the south(S, SE, SW) is a little higher than that of talus on the slope facing the north(N, NE, NW). 2. The Pattern Characteristics 1) The tongue-shaped type among the four types is the most in number. 2) The average length of talus slope is 99 meters, especially that of talus composed of hornfels or granodiorite is longer. Foth the former is easy to make free face; the latter is easdy to produce round stones. The average length of block stream slope is 145 meters, the longest of all is one km(granodiorite). 3) The gradient of talus slope is 20~45${^\circ}$, most of them 26-30${^\croc}$; but talus composed of intrusive rocks is gentle. 4) The slope pattern of talus shows concave slope, which means readjustment of constituent debris. Some of the block stream slope patterns show concave slope at the upper slope and the lower slope, but convex slope at the middle slope; others have uneven slope. 3. The deposit characteristics 1) The average length of constituent debris is 48~172 centimeters in diameter, the sorting of debris is not bad without matrix. That of block stream is longer than that of talus; this difference of debris average diameter is funda-mentally caused by joint space of bedrocks. 2) The shape of constituent debris in talus is mainly angular, but that of the debris composed of intrusive rocks is sub-angular. The shape of constituent debris in block stream is mainly sub-roundl. 3) IN case dof talus, debris diameter is generally increasing with downward slope, but some of them are disordered and the debris diameter of the sides are larger than that of the middle part on a landform surface. In block stream, debris diameter variation is perpendicularly disordered, and the debris diameter of the middle part is generally larger than that of the sides on a landform surface. 4)The long axis orientation of debris is a not bad at the lower part of the slope in talus (only 2 of 6 talus). In block stream(2 of 3), one is good in sorting; another is not bad. The researcher thinks that the latter was caused by the collapse of constituent debris. 5) Most debris were weathered and some are secondly weathered in situ, but talus composed of fresh debris is developing. 4. The landform development of debris slopes and the arrangement types of the mountain slope 1) The formation and development period of talus is divided into two periods. The first period is formation period of talus9the last glacial period), the second period is adjustment period(postglacial age). And that of block stream is divided into three periods: the first period is production period of blocks(tertiary, interglacial period), the second formation period of block stream(the last glacial period), and the third adjustment period of block stream(postglacialage). 2) The arrangement types of mountain slope are divided into six types in this research area, which are as follows. Type I; high level convex slope-free face-talus-block stream-alluvial surface Type II: high level convex slope-free face-talus-alluvial surface Type III: free face-talus-block stream-all-uvial surface Type IV: free face-talus-alluval surface Type V: talus-alluval surface Type VI: block stream-alluvial surface Particularly, type IV id\s basic type of all; others are modified ones.

  • PDF

A Legal Study on liability for damages cause of the air carrier : With an emphasis upon liability of passenger (항공운송인의 손해배상책임 원인에 관한 법적 고찰 - 여객 손해배상책임을 중심으로 -)

  • So, Jae-Seon;Lee, Chang-Kyu
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.3-35
    • /
    • 2013
  • Air transport today is a means of transport that is optimized for exchanges between nations. Around the world, has experienced an increase in operating and the number of airline route expansion that has entered into the international aviation agreements in order to take advantage of the air transport efficient, but the possibility of the occurrence of air transport accidents increased. When compared to the accident of other means of transport, development of air transport accidents, not high, but it leads to catastrophe aviation accident occurs. Air Transport accident many international transportation accident than domestic transportation accident, in the event of an accident, the analysis of the legal responsibility of the shipper or the like is necessary or passenger air carrier. Judgment of the legal order of discipline of air transport accident is a classification of the type of air transport agreement. Depending on the object, air transport agreements are classified into the contract of carriage of aviation of the air passenger transportation contract. For casualties occurs, air passenger transportation accident is a need more discussion of legal discipline for this particular. Korean Commercial Code, it is possible to reflect in accordance with the actual situation of South Korea the contents of the treaty, which is utilized worldwide in international air transport, even on the system, to control land, sea, air transport and welcoming to international standards. However, Korean Commercial Code, the problem of the Montreal Convention has occurred as it is primarily reflecting the Montreal Convention. As a cause of liability for damages, under the Commercial Code of Korea and the contents of the treaty precedent is reflected, the concept of accident is necessary definition of the exact concept for damages of passengers in particular. Cause of personal injury or death of passengers, in the event of an accident to the "working for the elevation" or "aircraft" on, the Montreal Convention is the mother method of Korea Commercial Code, liability for damages of air carrier defines. The Montreal Convention such, continue to be a matter of debate so far in connection with the scope of "working for the lifting of" the concepts defined in the same way from Warsaw Convention "accident". In addition, it is discussed and put to see if you can be included mental damage passenger suffered in air transport in the "personal injury" in the damage of the passenger is in the range of damages. If the operation of aircraft, injury accident, in certain circumstances, compensation for mental damage is possible, in the same way as serious injury, mental damage caused by aviation accidents not be able to live a normal life for the victim it is damage to make. So it is necessary to interpret and what is included in the injury to the body in Korea Commercial Code and related conventions, non-economic damage of passengers, clearly demonstrated from the point of view of prevention of abuse of litigation and reasonable protection of air carrier it must compensate only psychological damage that can be. Since the compensation of delay damages, Warsaw Convention, the Montreal Convention, Korea Commercial Code, there are provisions of the liability of the air carrier due to the delayed arrival of passenger and baggage, but you do not have a reference to delayed arrival, the concept of delay arrangement is necessary. The strict interpretation of the concept of delayed arrival, because it may interfere with safe operation of the air carrier, within the time agreed to the airport of arrival that is described in the aviation contract of carriage of passenger baggage, or, these agreements I think the absence is to be defined as when it is possible to consider this situation, requests the carrier in good faith is not Indian or arrive within a reasonable time is correct. The loss of passenger, according to the international passenger Conditions of Carriage of Korean Air, in addition to the cases prescribed by law and other treaties, loss of airline contracts, resulting in passengers from a service that Korean Air and air transport in question do damage was is, that the fact that Korean Air does not bear the responsibility as a general rule, that was caused by the negligence or intentional negligence of Korean Air is proof, negligence of passengers of the damage has not been interposed bear responsibility only when it is found. It is a clause in the case of damage that is not mandated by law or treaty, and responsible only if the negligence of the airline side has been demonstrated, but of the term negligence "for" intentional or negligent "Korean Air's Terms" I considered judgment of compatibility is required, and that gross negligence is appropriate. The "Korean Air international passenger Conditions of Carriage", airlines about the damage such as electronic equipment that is included in the checked baggage of passengers does not bear the responsibility, but the loss of baggage, international to arrive or depart the U.S. it is not the case of transportation. Therefore, it is intended to discriminate unfairly passengers of international flights arriving or departure to another country passengers of international flights arriving or departure, the United States, airlines will bear the responsibility for the goods in the same way as the contents of the treaty it should be revised in the direction.

  • PDF