• Title/Summary/Keyword: Source-drain current

Search Result 249, Processing Time 0.026 seconds

A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating

  • Nakatani, Keigo;Ishizaki, Toshio
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • The magnetron, a vacuum tube, is currently the usual high-power microwave power source used for microwave heating. However, the oscillating frequency and output power are unstable and noisy due to the low quality of the high-voltage power supply and low Q of the oscillation circuit. A heating system with enhanced reliability and the capability for control of chemical reactions is desired, because microwave absorption efficiency differs greatly depending on the object being heated. Recent studies on microwave high-efficiency power amplifiers have used harmonic processing techniques, such as class-F and inverse class-F. The present study describes a high-efficiency 100 W GaN-HEMT amplifier that uses a harmonic processing technique that shapes the current and voltage waveforms to improve efficiency. The fabricated GaN power amplifier obtained an output power of 50.4 dBm, a drain efficiency of 72.9%, and a power added efficiency (PAE) of 64.0% at 2.45 GHz for continuous wave operation. A prototype microwave heating system was also developed using this GaN power amplifier. Microwaves totaling 400 W are fed from patch antennas mounted on the top and bottom of the microwave chamber. Preliminary heating experiments with this system have just been initiated.

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;김준호;신재훈;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • Organic thin film transitors(OTFT) are of interest for use in broad area electronic applications. And recently organic electroluminescent devices(OELD) have been intensively investigated for using in full-color flat-panel display. We have fabricated inverted-staggered structure OTFTs at lower temperature using the fused-ring polycyclic aromatic hydrocarbon pentacene as the active eletronic material and photoacryl as the organic gate insulator. The field effect mobility is 0.039∼0.17 ㎠/Vs, on-off current ratio is 10$\^$6/, and threshold voltage is -7V. And here we report the study of driving emitting, Ir(ppy)$_3$, phosphorescent OELD with all organic thin film transistor and investigated its electrical characteristics. The OELD with a structure of ITO/TPD/8% Ir(ooy)$_3$ doped in BCP/BCP/Alq$_3$/Li:Al/Al and OTFT with a structure of inverted-stagged Al(gate electrode)/photoacry(gate insulator)/pentacene(p-type organic semiconductor)/ Au(source-drain electrode) were fabricated on the ITP patterned glass substrate. The electrical characteristics are turn-on voltage of -10V, and maximum luminance of about 90 cd/㎡. Device characteristics were quite different with that of only OELD.

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4th-Order Resonators

  • Lai, Wen-Cheng;Jang, Sheng-Lyang;Liu, Yi-You;Juang, Miin-Horng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.506-510
    • /
    • 2016
  • A triple-band (TB) oscillator was implemented in the TSMC $0.18{\mu}m$ 1P6M CMOS process, and it uses a cross-coupled nMOS pair and two shunt $4^{th}$ order LC resonators to form a $6^{th}$ order resonator with three resonant frequencies. The oscillator uses the varactors for band switching and frequency tuning. The core current and power consumption of the high (middle, low)- band core oscillator are 3.59(3.42, 3.4) mA and 2.4(2.29, 2.28) mW, respectively at the dc drain-source bias of 0.67V. The oscillator can generate differential signals in the frequency range of 8.04-8.68 GHz, 5.82-6.15 GHz, and 3.68-4.08 GHz. The die area of the triple-band oscillator is $0.835{\times}1.103mm^2$.

Analysis of the Fixed Frequency LCL-type Converter at Continuous Current Mode Including Parasitic Losses (연속전류모드에서 기생손실들을 고려한 고정주파수 LCL형 컨버터 해석)

  • Park, Sangeun;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.785-793
    • /
    • 2016
  • This paper analyzes an LCL-type isolated dc-dc converter operating for constant output voltage in the continuous conduction mode(CCM) with resistances of parasitic losses-static drain-source on resistance of power switch, ESR of resonant network(L-C-L)-using a high loaded quality factor Q assumptions and fourier series techniques. Simple analytical expressions for performance characteristics are derived under steady-state conditions for designing and understanding the behavior of the proposed converter. The voltage-driven rectifier is analyzed, taking into account the diode threshold voltage and the diode forward resistance. Experimental results measured for a proposed converter at low input voltage and various load resistances show agreement to the theoretical performance predicted by the analysis within maximum 4% error. Especially in the case of low output voltages and large loads, It is been observed that introduction of both rectifier and the parasitic components of converter had considerable effect on the performance.

Electrical Characteristics of Ambipolar Thin Film Transistor Depending on Gate Insulators (게이트 절연특성에 의존하는 양방향성 박막 트랜지스터의 동작특성)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1149-1154
    • /
    • 2014
  • To observe the tunneling phenomenon of oxide semiconductor transistor, The Indium-gallum-zinc-oxide thin film transistors deposited on SiOC as a gate insulator was prepared. The interface characteristics between a dielectric and channel were changed in according to the properties of SiOC dielectric materials. The transfer characteristics of a drain-source current ($I_{DS}$) and gate-source voltage ($V_{GS}$) showed the ambipolar or unipolar features according to the Schottky or Ohmic contacts. The ambipolar transfer characteristics was obtained at a transistor with Schottky contact in a range of ${\pm}1V$ bias voltage. However, the unipolar transfer characteristics was shown in a transistor with Ohmic contact by the electron trapping conduction. Moreover, it was improved the on/off switching in a ambipolar transistor by the tunneling phenomenon.

Design of MMIC SPST Switches Using GaAs MESFETs (GaAs MESFET을 이용한 MMIC SPST 스위치 설계)

  • 이명규;윤경식;형창희;김해천;박철순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.371-379
    • /
    • 2002
  • In this paper, the MMIC SPST switches operating from DC to 3GHz were designed and implemented. Prior to the design of switches, the small and large-signal switch models were needed to predict switch performance accurately. The newly proposed small-signal switch model parameters were extracted from measured S-parameters using optimization technique with estimated initial values and boundary limits. In the extraction of large-signal switch model parameters, the current source was modeled by fitting empirical equations to measured DC data and the charge model was derived from extracted channel capacitances from measured S-parameters varying the drain-source voltage. To design basic series-shunt SPST switches and isolation-improved SPST switches, we applied this model to commercial microwave circuit simulator. The improved SPST switches exhibited 0.302dB insertion loss, 35.762dB isolation, 1.249 input VSWR, 1.254 output VSWR, and about 15.7dBm PldB with 0/-3V control voltages at 3GHz.

Design and Fabrication of the 0.1${\mu}{\textrm}{m}$ Г-Shaped Gate PHEMT`s for Millimeter-Waves

  • Lee, Seong-Dae;Kim, Sung-Chan;Lee, Bok-Hyoung;Sul, Woo-Suk;Lim, Byeong-Ok;Dan-An;Yoon, yong-soon;kim, Sam-Dong;Shin, Dong-Hoon;Rhee, Jin-koo
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • We studied the fabrication of GaAs-based pseudomorphic high electron mobility transistors(PHEMT`s) for the purpose of millimeter- wave applications. To fabricate the high performance GaAs-based PHEMT`s, we performed the simulation to analyze the designed epitaxial-structures. Each unit processes, such as 0.1 m$\mu$$\Gamma$-gate lithography, silicon nitride passivation and air-bridge process were developed to achieve high performance device characteristics. The DC characteristics of the PHEMT`s were measured at a 70 $\mu$m unit gate width of 2 gate fingers, and showed a good pinch-off property ($V_p$= -1.75 V) and a drain-source saturation current density ($I_{dss}$) of 450 mA/mm. Maximum extrinsic transconductance $(g_m)$ was 363.6 mS/mm at $V_{gs}$ = -0.7 V, $V_{ds}$ = 1.5 V, and $I_{ds}$ =0.5 $I_{dss}$. The RF measurements were performed in the frequency range of 1.0~50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.7 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 3.2 dB of $S_{21}$ gain were obtained, respectively. A current gain cut-off frequency $(f_T)$ of 106 GHz and a maximum frequency of oscillation $(f_{max})$ of 160 GHz were achieved from the fabricated PHEMT\\`s of 0.1 m$\mu$ gate length.h.

  • PDF

Contact Resistance Reduction between Ni-InGaAs and n-InGaAs via Rapid Thermal Annealing in Hydrogen Atmosphere

  • Lee, Jeongchan;Li, Meng;Kim, Jeyoung;Shin, Geonho;Lee, Ga-won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.283-287
    • /
    • 2017
  • Recently, Ni-InGaAs has been required for high-performance III-V MOSFETs as a promising self-aligned material for doped source/drain region. As downscaling of device proceeds, reduction of contact resistance ($R_c$) between Ni-InGaAs and n-InGaAs has become a challenge for higher performance of MOSFETs. In this paper, we compared three types of sample, vacuum, 2% $H_2$ and 4% $H_2$ annealing condition in rapid thermal annealing (RTA) step, to verify the reduction of $R_c$ at Ni-InGaAs/n-InGaAs interface. Current-voltage (I-V) characteristic of metal-semiconductor contact indicated the lowest $R_c$ in 4% $H_2$ sample, that is, higher current for 4% $H_2$ sample than other samples. The result of this work could be useful for performance improvement of InGaAs n-MOSFETs.

Degradation of the SiGe hetero-junction bipolar transistor in SiGe BiCMOS process (실리콘-게르마늄 바이시모스 공정에서의 실리콘-게르마늄 이종접합 바이폴라 트랜지스터 열화 현상)

  • Kim Sang-Hoon;Lee Seung-Yun;Park Chan-Woo;Kang Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The degradation of the SiGe hetero-junction bipolar transistor(HBT) properties in SiGe BiCMOS process was investigated in this paper. The SiGe HBT prepaired by SiGe BiCMOS process, unlike the conventional one, showed the degraded DC characteristics such as the decreased Early voltage, the decreased collector-emitter breakdown voltage, and the highly increased base leakage current. Also, the cutoff frequency(f/sub T/) and the maximum oscillation frequency(f/sub max/) representing the AC characteristics are reduced to below 50%. These deteriorations are originated from the change of the locations of emitter-base and collector-base junctions, which is induced by the variation of the doping profile of boron in the SiGe base due to the high-temperature source-drain annealing. In the result, the junctions pushed out of SiGe region caused the parastic barrier formation and the current gain decrease on the SiGe HBT device.

Analysis for Potentail Distribution of Asymmetric Double Gate MOSFET Using Series Function (급수함수를 이용한 비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2621-2626
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as doping distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.