• Title/Summary/Keyword: Source temperature

Search Result 3,901, Processing Time 0.028 seconds

Forced Convection Cooling Across Rectangular Blocks in a Parallel Channel (블럭이 부착된 수평 유로에서의 강제대류 열전달 해석)

  • 조한승;유재석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.251-257
    • /
    • 1993
  • The purpose of this study is to obtain an improved interpretation of heat transfer phenomena between blocks and fluids in the parallel conducting plates. Flow is two-dimensional, incompressible steady laminar flow over rectangular blocks, representing finite heat source on parallel plate. Heat transfer phenomena, temperature of blocks and heat transfer into the flow field are investigated for different spacings between blocks and Reynolds numbers. Results indicate that Nusselt number on the far upstream corner of the block was higher than that of any part of the block. As Reynolds number and spacings of blocks increased, Nusselt number increased. The distribution of local Nusselt number on the top surface of the conducting plate is similar to the case with insulated plate. Temperature of the block which has heat source in half cubage was approximately twice as high as temperature of the block which has heat source in whole cubage. As Reynolds number and spacings of blocks increased, overall temperature decreased. The peak value of block temperature occurred at position shifted to the right or upper right from center. The maximum temperature of block can be expressed as a function of Reynolds number, spacings between blocks, position of maximum temperature of each block and then it is possible to predict the maximum temperature of blocks.

  • PDF

Comparison of Efficiency for Voltage Source and Current Source Based Converters in 5MW PMSG Wind Turbine Systems (전압형 및 전류형 컨버터를 적용한 5MW PMSG 풍력발전시스템의 효율 비교)

  • Kang, Tahyun;Kang, Taewon;Chae, Beomseok;Lee, Kihyun;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.410-420
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5 MW-class medium-voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for a voltage source type topology, whereas a two-level converter is employed for current source type topology, considering the popularity in the industry. To match the required voltage level of 4160 V with the same switching device of IGCT as in the voltage source converter, two active switches are connected in series for the case of current source converter. Transient thermal modeling of a four-layer Foster network for heat transfer is done to better estimate the transient junction and case temperature of power semiconductors during various operating conditions in wind turbines. The loss analysis is confirmed through PLECS simulations. Comparison result shows that the VSC-based wind turbine system has higher efficiency than the CSC under the rated operating conditions.

Characteristics of Thermodynamic Performance of Heat Exchanger in Organic Rankine Cycle Depending on Pinch Temperature Difference (유기랭킨사이클에서 핀치온도차의 변화에 따른 열교환기의 열역학적 성능특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;PARK, SANG HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.590-599
    • /
    • 2015
  • In this paper a performance analysis is carried out based on the first and second laws of thermodynamics for heat exchanger in organic Rankine cycle (ORC) for the recovery of low-temperature finite thermal energy source. In the analysis, effects of the selection of working fluid and pinch temperature difference are investigated on the performance of the heat exchanger including the effectiveness of the heat exchanger, exergy destruction, second-law efficiency, number of transfer unit (NTU), and pinch point. The temperature distribution are shown depending on the working fluids and the pinch temperature difference. The results show that the performance of the heat exchanger depends on the pinch temperature difference sensitively. As the pinch temperature increases, the exergy destruction in the evaporator increases but the effectiveness, second law efficiency and NTU decreases.

Prediction of Airflow and Temperature Field in a Room With Convective Heat Source (열원이 존재하는 작업장내 기류 및 온도장 예측)

  • Jung, Yu-Jin;Ha, Hyun-Chul;Kim, Tae-Hyeung;Yoo, Guen-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • A CFD simulation of airflow and temperature field in a heated room has been described in this paper. The thermal wall jet created by a radiator greatly influences the airflow pattern, temperature distribution. The area close La a heat source has a higher risk of air-borne contamination and imposes a harmful effect on occupants in that area. The predicted flow field, temperature results show good agreement with the measured data. As the results were compared with experimental data, the applicability of CFD was satisfactorily verified. Also, the CFD simulation can capture the natural convective flow features. If a CFD simulation is applied ventilation design with a heat source, An effective design will be attained. Further study is required to improve the accuracy of CFD simulation.

  • PDF

THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION HEAT AND MASS TRANSFER FLOW PAST A LINEARLY ACCELERATED VERTICAL POROUS PLATE WITH VARIABLE TEMPERATURE AND MASS DIFFUSION

  • Venkateswarlu, M.;Ramana Reddy, G.V.;Lakshmi, D.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.257-268
    • /
    • 2014
  • The objective of the present study is to investigate thermal diffusion and radiation effects on unsteady MHD flow past a linearly accelerated vertical porous plate with variable temperature and also with variable mass diffusion in presence of heat source or sink under the influence of applied transverse magnetic field. The fluid considered here is a gray, absorbing/emitting radiation but a non-scattering medium. At time t > 0, the plate is linearly accelerated with a velocity $u=u_0t$ in its own plane. And at the same time, plate temperature and concentration levels near the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the closed analytical method. The velocity, temperature, concentration, skin-friction, the rate or heat transfer and the rate of mass transfer are studied through graphs in terms of different physical parameters like magnetic field parameter (M), radiation parameter (R), Schmidt parameter (Sc), Soret number (So), Heat source parameter (S), Prandtl number (Pr), thermal Grashof number (Gr), mass Grashof number (Gm) and time (t).

Enhancement of Wear Resistance by Low Heat Treatment and the Plasma Source Ion Implantation of Tungsten Carbide Tool (초경 엔드밀의 플라즈마 이온 주입과 저온 열처리를 통한 내마멸성 향상)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • In this research, nitrogen plasma source ion implantation(PSII) of non-coated tungsten carbide endmill tools was conducted with low heat treatment for increasing wear resistance. After the low heat treatment of PSIIed tools to give a homogeneity of wear resistance, the surface modification of tools was analyzed by hardness test, surface roughness and cutting forces. As for the resultant cutting forces, low heat treatment in temperature of $400^{\circ}C$ and $500^{\circ}C$ is stable because of low cutting resistance. The 20-minutes heat treated tool at spindle speed 25000rpm has superiority of surface roughness, Ra of $0.420{\mu}m$ and was found to have good wear resistance. The higher hardness value was obtained by increasing temperature from $300^{\circ}C$ to $600^{\circ}C$ for PSIIed tools with low heat treatment. As the PSIIed tools under 10minutes at temperature of $600^{\circ}C$ have the highest hardness as Hv of 2349.8, It was analyzed that temperature processing give much influences on hardness.

A Study on the Improvement of Numerical Thermal Analysis for Steel Welds (철강 용접부 열해석 정도 향상에 관한 연구)

  • Kang, Youn-Hee;Kim, Choong-Myeong;Hong, Hyun-Uk;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is the first part of the study on the accuracy improvement of numerical analysis of steel welds. The aim of this paper is to raise the accuracy of thermal analysis results, such as the shape and size of the weld cross section and the hardness distribution in HAZ(Heat-Affected Zone). It is known that the factors affecting on the accuracy are thermal properties, metallurgical properties and welding heat source model. It was found that the arbitrary distributed heat source model should be used to predict practical weld cross section shape and size. Also, in order to improve the prediction accuracy of HAZ hardness distribution, it was essential to consider 2 CCT(Continuous Cooling Transformation) diagrams in calculating volume fraction of transformed phases. One is the peak temperature being around melting temperature. The other is the peak temperature being around metallurgical transformation temperature.

Laser Energy Optimization for Dissimilar Polymer Joining (이종폴리머 접합을 위한 레이저 에너지 최적제어 기법)

  • Song, Chi Hun;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.63-69
    • /
    • 2014
  • Dual laser heat sources were used for polymer based material joining. An infrared camera and thermocouple DAQ system were used to correlate the temperature distribution to computer simulation. A 50 degree tilted pre-heating laser source was acting as a heating source to promote the temperature to minimize thermal shock by the following a welding heat source. Based on the experimental result, the skin depth was empirically estimated for computer simulation. The offsets of 3mm, 5mm and 10mm split by weld and preheat were effectively used to control the temperature distribution for the optimal laser joining process. The closer offset resulted in an excessive melting or burning caused by sudden temperature rising. The laser power was split by 50%, 75% and 100% of the weld power, and the best results were found at 50% of preheating. To accurately simulate the physical laser beam absorption and joining optical properties were experimentally measured for the computer FEM simulation. The simulation results showed close correlation between theoretical and experimental results. The developed dual laser process is expected to increase productivity and minimize the cost for the final products.

A Study on the Characteristics of Low Temperature Calcined Phosphor Paste (저온소성 형광체 페이스트의 특성 연구)

  • Lee, Dong-Wook;Lee, Mi-Young;Ahn, Suk-Chul;Nam, Su-Yong
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • In this study we have manufactured and characterized the low temperature calcined phosphor paste that can be used as a flat light source for LCD BLU. For the phosphor paste, the low temperature calcined acryl resin was used as the binder. From the result of thermal decomposition measurement, residual carbonaceous materials was found to be less than 0.1 wt% at $400^{\circ}C$. A flat light source device that was made by screen printing using the manufactured paste showed a near 100% luminous efficiency compared to the luminance of the phosphor.

  • PDF

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF