DOI QR코드

DOI QR Code

Characteristics of Thermodynamic Performance of Heat Exchanger in Organic Rankine Cycle Depending on Pinch Temperature Difference

유기랭킨사이클에서 핀치온도차의 변화에 따른 열교환기의 열역학적 성능특성

  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • PARK, SANG HEE (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 박상희 (금오공과대학교 기계공학과)
  • Received : 2015.10.01
  • Accepted : 2015.12.30
  • Published : 2015.12.30

Abstract

In this paper a performance analysis is carried out based on the first and second laws of thermodynamics for heat exchanger in organic Rankine cycle (ORC) for the recovery of low-temperature finite thermal energy source. In the analysis, effects of the selection of working fluid and pinch temperature difference are investigated on the performance of the heat exchanger including the effectiveness of the heat exchanger, exergy destruction, second-law efficiency, number of transfer unit (NTU), and pinch point. The temperature distribution are shown depending on the working fluids and the pinch temperature difference. The results show that the performance of the heat exchanger depends on the pinch temperature difference sensitively. As the pinch temperature increases, the exergy destruction in the evaporator increases but the effectiveness, second law efficiency and NTU decreases.

Keywords

References

  1. International Energy Agency (IEA), "World energy outlook 2013", 2013.
  2. V. A. Prisyazhnink, "Alternative tends in development of thermal power plant", Applied Ther. Eng, Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  3. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  4. K. H. Kim, and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, 2014, pp. 50-60. https://doi.org/10.1016/j.applthermaleng.2014.04.064
  5. J. Bao, and L. Zhao, "A review of working fluid and expander selections for organic Rankine cycle", Renew. Sustain. Energy Rev., Vol. 24, 2013, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  6. S. Lecompte, H. Huisseune, M. van den Broek, B. Vanslambrouck, and N. De Paepe, "Review of organic Rankine cycle (ORC) architectures for waste heat recovery", Renew. Sustain. Energy Rev., Vol. 47, 2015, pp. 448-461. https://doi.org/10.1016/j.rser.2015.03.089
  7. K. H. Kim, and Y. G. Kim, "Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, 2011, pp. 699-705.
  8. K. H. Kim, and Y. G. Kim, "Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, pp. 402-408.
  9. K. H. Kim, Y. G. Kim, and S. H. Park, "Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC)", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, 2013, pp. 91-97. https://doi.org/10.7316/KHNES.2013.24.1.091
  10. U. Dresher, and D. Brueggemann, "Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants", Appl. Therm. Eng., Vol. 27, 2007, pp. 223-228. https://doi.org/10.1016/j.applthermaleng.2006.04.024
  11. F, Heberle, and D. Brueggemann, "Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation", Appl. Therm. Eng., Vol. 30, 2010, pp. 1326-1332. https://doi.org/10.1016/j.applthermaleng.2010.02.012
  12. T. C. Hung, S. K. Wang, C. H. Guo, B. S. Pei, and K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, 2010, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  13. B. F. Tchanche, G. Papadakis, and A. Frangoudakis, "Fluid selection for a low- temperature solar organic Rankine cycle", Applied Thermal Eng, Vol. 29, 2009, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  14. Y. Dai, J. Wang, and L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery", Energy Convrs. Mgmt., Vol. 50, 2009, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  15. D. Manolakos, G. Papadakis, S. Kyritsis, and K. Bouzianas, "Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination", Desalination, Vol. 203, 2007, pp. 366-374. https://doi.org/10.1016/j.desal.2006.04.018
  16. D. W. Sun, "Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration", Energy Conversion and Management, Vol. 38, 1997, pp. 479-491. https://doi.org/10.1016/S0196-8904(96)00063-5
  17. H. Vidal, and S. Colle, "Simulation and economic optimization of a solar assisted combined ejector-vapor compression cycle for cooling applications", Applied Thermal Eng, Vol. 30, 2010, pp. 478-486. https://doi.org/10.1016/j.applthermaleng.2009.10.008
  18. H. Wang, R. Oeterson, and T. Herron, "Design study of configurations on system COP for a combined ORC and VCC", Energy, Vol. 36, 2011, pp. 4809-4820. https://doi.org/10.1016/j.energy.2011.05.015
  19. K. H. Kim, J. Y. Jin, and H. J. Ko, "Performance analysis of a vapor compression cycle driven by organic Rankine cycle", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, 2012, pp. 521-529. https://doi.org/10.7316/KHNES.2012.23.5.521
  20. K. H. Kim, and H. Perez-Blanco, "Performance Analysis of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Power and Refrigeration Cogeneration", Appl. Therm. Eng., Vol. 91, 2015, pp. 964-974. https://doi.org/10.1016/j.applthermaleng.2015.04.062
  21. K. Kim, U. Lee, C. Kim, and C. Han, "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid", Energy, Vol. 88, 2015, pp. 304-313. https://doi.org/10.1016/j.energy.2015.05.047
  22. H. Y. Lee, and K. H. Kim, "Energy and Exergy Analyses of a Combined Power Cycle Using the Organic Rankine Cycle and the Cold Energy of Liquefied Natural Gas", Entropy, Vol. 17, 2015, pp. 6412-6432. https://doi.org/10.3390/e17096412
  23. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", App. Energy, Vol. 113, 2014, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
  24. K. H. Kim, K. Kim, and H. J. Ko, "Entropy and Exergy Analysis of a Heat Recovery Vapor Generator for Ammonia-Water Mixtures", Entropy, Vol. 16, 2014, pp. 2056-2070. https://doi.org/10.3390/e16042056
  25. T. Yang, G. J. Chen, and T. M. Gou, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J., Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  26. J. Gao, L. D. Li, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibrium, Vol. 224, 2004, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007
  27. C. L. Yaws, "Chemical Properties Handbook", McGraw-Hill, New York, NY, USA, 1999.