• Title/Summary/Keyword: Source separation

Search Result 453, Processing Time 0.026 seconds

A Study on Physical Characteristics and Plastics Recycling of Used Small Household Appliances (폐소형가전의 물리적 성상 분석 및 플라스틱 재활용에 관한 연구)

  • Choi, Woo Zin;Park, Eun Kyu;Kang, Seok Hwan;Jung, Bam Bit;Kim, Soo Kyung
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Small household appliances such as electric rice cooker, a vacuum cleaner, an electric fan, etc. are diverse and complex due to the materials and components and waste streams from the manufacturing processes. In the present study, physical characterization of small e-wastes was analyzed on major items including electric rice cooker after manual dismantling. Small household appliances is an important potential source of waste plastic, however, recycling plastics from small e-waste is still unusual. The present communication gives results of separation processes on black plastics and the limitations of these sorting processes in used small household appliances.

Preparation Nanosized TPA-Silicalite-1 with Different Silica Sources and Promoters (다양한 실리카 원과 결정화 촉진제를 이용한 나노크기의 TPA-Silicalite-1 제조)

  • Jung, Sang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, nanosized TPA-silicalite-1 was synthesized with a suitable molar composition of TPAOH: $SiO_2$: $H_2O$ for the development of zeolite ceramic membranes to utilize as gas separation. As silica sources, TEOS, LUDOX AS-40 and CAB-O-SIL were used with the starting material of TPAOH. $NaH_2PO_4$, and a variety of acids and bases were used as promoters after TPAOH, $SiO_2$, $H_2O$ gel synthesis. To decrease synthesis time, a two step temperature change method was applied to the synthesis of TPA-silicalite-1 at a low temperature. TPA-silicalite-1 synthesized was analyzed with XRD, SEM, BET and TGA. As a result, TPA-silicalite-1 powders with a particle size of 100 nm and a specific surface area of $416m^2/g$ were obtained as optimum synthesis conditions when the two stage temperature change method was used with $NaH_2PO_4$ as promoter.

Direct Quantitation of Amino Acids in Human Serum Using a Stepwise-Dilution Strategy and a Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry Method

  • Lee, Jaeick;Lee, Seunghwa;Kim, Byungjoo;Lee, Joonhee;Kwon, Oh-Seung;Cha, Eunju
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • A quantitation method for free amino acids in human serum was developed using a stepwise-dilution method and a bimodal cation exchange (CEX)/hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry system equipped with an electrospray ionization source (ESI/MS/MS). This method, which was validated using quality control samples, was optimized for enhanced selectivity and sensitivity. Dithiothreitol (DTT) was used as a reducing agent to prevent the oxidation of a serum sample ($50{\mu}L$), which was then subjected to stepwise dilution using 3, 30, and 90 volumes of acetonitrile containing 0.1% formic acid. Chromatographic separation was performed on an Imtakt Intrada Amino Acid column ($50mm{\times}3mm$, $3{\mu}m$) in mixed mode packed with CEX and HILIC ligands embedded in the stationary phase. Underivatized free amino acids were eluted and separated within 10 min. As a result of the validation, the precision and accuracy for the inter- and intraday assays were determined as 2.11-11.51% and 92.82-109.40%, respectively. The lowest limit of quantification (LLOQ) was $0.5-4.0{\mu}g/mL$ and the matrix effect was 80.22-115.93%. The proposed method was successfully applied to the quantitative analysis of free amino acids in human serum.

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

Energy Spectrum Analysis between Single and Dual Energy Source X-ray Imaging for PCB Non-destructive Test (PCB 비파괴 검사에 있어서 단일 에너지 소스와 이중 에너지 소스의 영상비교를 위한 엑스선 스펙트럼 분석)

  • Kim, Myungsoo;Kim, Giyoon;Lee, Minju;Kang, Dong-uk;Lee, Daehee;Park, Kyeongjin;Kim, Yewon;Kim, Chankyu;Kim, Hyoungtaek;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB non-destructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

A Statistical Analysis of JERS L-band SAR Backscatter and Coherence Data for Forest Type Discrimination

  • Zhu Cheng;Myeong Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.25-40
    • /
    • 2006
  • Synthetic aperture radar (SAR) from satellites provides the opportunity to regularly incorporate microwave information into forest classification. Radar backscatter can improve classification accuracy, and SAR interferometry could provide improved thematic information through the use of coherence. This research examined the potential of using multi-temporal JERS-l SAR (L band) backscatter information and interferometry in distinguishing forest classes of mountainous areas in the Northeastern U.S. for future forest mapping and monitoring. Raw image data from a pair of images were processed to produce coherence and backscatter data. To improve the geometric characteristics of both the coherence and the backscatter images, this study used the interferometric techniques. It was necessary to radiometrically correct radar backscatter to account for the effect of topography. This study developed a simplified method of radiometric correction for SAR imagery over the hilly terrain, and compared the forest-type discriminatory powers of the radar backscatter, the multi-temporal backscatter, the coherence, and the backscatter combined with the coherence. Statistical analysis showed that the method of radiometric correction has a substantial potential in separating forest types, and the coherence produced from an interferometric pair of images also showed a potential for distinguishing forest classes even though heavily forested conditions and long time separation of the images had limitations in the ability to get a high quality coherence. The method of combining the backscatter images from two different dates and the coherence in a multivariate approach in identifying forest types showed some potential. However, multi-temporal analysis of the backscatter was inconclusive because leaves were not the primary scatterers of a forest canopy at the L-band wavelengths. Further research in forest classification is suggested using diverse band width SAR imagery and fusing with other imagery source.

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Design of High-Efficient Divided Wall Distillation Columns for Propane and Butane Separation (프로판과 부탄 분리를 위한 고효율 분리벽형 증류탑 설계)

  • KIM, NAMGEUN;RYU, HYUNWOOK;KANG, SUNGOH;OH, MIN;LEE, CHANGHA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • LPG is increasingly being used as a clean energy source due to the continuous strengthening of environmental regulations. In addition, the demand of propane which is the basic compound for petrochemicals is increasing for propylene production. In the study, a divided wall column was used as de-propanizer and de-butanizer, which is expected to save large amount of energy among the four conventional distillation columns used for processing LPG. The simulation results showed a decrease of energy duty with ESI by 30.30% using two divided wall columns. Furthermore, simulation case studies were carried out with respect to design and operation condition. The main column tray and withdrawal tray were determined from the design case studies while the internal liquid flow and vapor flow were decided from the operating case studies. Also, ESI of 1.06% could be achieved from the case studies. According to the results, the simulation method used showed that it is greatly helpful to the design and evaluate a highly efficient divided wall column.

Evaluation of Oxidation Efficiency of Aromatic Volatile Hydrocarbons using Visible-light-activated One-Dimensional Metal Oxide Doping Semiconductor Nanomaterials prepared by Ultrasonic-assisted Hydrothermal Synthesis (초음파-수열합성 적용 가시광 활성 일차원 금속산화물 도핑 반도체 나노소재를 이용한 방향족 휘발성 탄화수소 제어효율 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.967-974
    • /
    • 2018
  • In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using $WO_3$-doped $TiO_2$ nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of $WO_3$ into $TiO_2$ nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.