• Title/Summary/Keyword: Source impedance estimation

Search Result 16, Processing Time 0.021 seconds

Extended Fault Location Algorithm Using the Estimated Remote Source Impedance for Parallel Transmission Lines

  • Ryu, Jeong-Hun;Kang, Sang-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2212-2219
    • /
    • 2018
  • This paper describes extended fault location algorithm using estimated remote source impedance. The method uses data only at the local end and the sequence current distribution factors for more accurate estimation. The proposed algorithm can respond to variation of the local and remote source impedance. Therefore, this method is especially useful for transmission lines interconnected to a wind farm that the source impedance varies continuously. The proposed algorithm is very insensitive to the variation in fault distance and fault resistance. The simulation results have shown the accuracy and effectiveness of the proposed algorithm.

Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance (자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘)

  • Kwon, Young-Jin;Kim, Su-Hwan;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

An Improved Grid Impedance Estimation using PQ Variations (PQ변동을 이용한 개선된 계통 임피던스 추정기법)

  • Cho, Je-Hee;Kim, Yong-Wook;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.152-159
    • /
    • 2015
  • In a weak grid condition, the precise grid impedance estimation is essential to guaranteeing the high performance current control and power transfer for a grid-connected inverter. This study proposes a precise estimation method for grid impedance by PQ variations by employing the variation method of reference currents. The operation principle of grid impedance estimation is fully presented, and the negative impact of the phase locked loop is analyzed. Estimation error by a synchronization angle in the park's transformation using the phase locked loop is derived. As a result, the variation method of reference currents for accurate estimation is introduced. The validation of the proposed method is verified through several simulation results and experiments based on a 2-kW voltage source inverter prototype.

Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters

  • Le, Phuong Minh;Pham, Xuan Hoa Thi;Nguyen, Huy Minh;Hoang, Duc Duy Vo;Nguyen, Tuyen Dinh;Vo, Dieu Ngoc
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.234-250
    • /
    • 2018
  • This paper presents a new load sharing control for use between paralleled three-phase inverters in an islanded microgrid based on the online line impedance estimation by the use of a Kalman filter. In this study, the mismatch of power sharing when the line impedance changes due to temperature, frequency, significant differences in line parameters and the requirements of the Plug-and-Play mode for inverters connected to a microgrid has been solved. In addition, this paper also presents a new droop control method working with the line impedance that is different from the traditional droop algorithm when the line impedance is assumed to be pure resistance or pure inductance. In this paper, the line impedance estimation for parallel inverters uses the minimum square method combined with a Kalman filter. In addition, the secondary control loops are designed to restore the voltage amplitude and frequency of a microgrid by using a combined nominal value SOGI-PLL with a generalized integral block and phase lock loop to monitor the exact voltage magnitude and frequency phase at the PCC. A control model has been simulated in Matlab/Simulink with three voltage source inverters connected in parallel for different ratios of power sharing. The simulation results demonstrate the accuracy of the proposed control method.

Modifications of Numerical Impedance Boundary Conditions Considering Incident Acoustic Pressure (음향 입사파를 고려한 수치적 임피던스 경계조건의 보정)

  • Kim, Min-Woo;Park, Yong-Hwan;Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.344-348
    • /
    • 2007
  • The acoustic liner has been used for the suppression of noise. The impedance characteristics of the acoustic liner are increased by the incident pressure. For the estimation of the acoustic liner on the incident acoustic pressure effect, the modified impedance model is suggested on the basis of the GE impedance prediction model. The modified impedance model is originated from the 3 parameter impedance model, and extended to the incident pressure parameter. The modified model is applied on the simple duct analysis with variant source pressure. Through the computation, it is observed that the fore directivity patterns of the duct are varied by the incident SPL level.

  • PDF

Estimation of Vibrational Power Transmitted from Vibration Source to Supporting Structure - Estimation and Measurement of Vibrational Power Transmitted in the Horizontal Direction - (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정 - 수평방향으로 전달되는 진동파워의 추정 및 측정 -)

  • 김재철;주진수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1137-1143
    • /
    • 1998
  • This paper describes the method to measure of the vibrational power transmitted from the vibration source to the supporting structure in the horizontal direction. Generally, it is impossible to measure horizontal forces at the coupling points. However. the vibrational Power transmitted in the horizontal direction can be measured by using indirect method that is based on the mechanical impedance and velocities at the coupling points. We proposed the method to estimate the vibrational power when the vibration source and supporting structure cannot be separated. In this paper. the vibrational power transmitted in the horizontal direction is also estimated by using this method. The estimated and measured results of the mobilities at the coupling point and vibrational power in the horizontal direction are compared. It is shown that the estimated results agree well with the measured results. For the supporting structure with multiple coupling points, the other coupling points should be considered for measuring the vibrational power transmitted through one coupling points. We examine the effects of other coupling points and measure the vibrational power without considering the other coupling points.

  • PDF

Estimating aquifer location using deep neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.982-990
    • /
    • 2020
  • Groundwater is essential source of the freshwater. Groundwater is stored in the body of the rocks or sediments, called aquifer. Finding an aquifer is a very important part of the geophysical survey. The best method to find the aquifer is to make a borehole. Single borehole is not a suitable method if the aquifer is not located in the borehole drilled area. To overcome this problem, a cross borehole method is used. Using a cross borehole method, we can estimate aquifer location more precisely. Electrical impedance tomography is use to estimate the aquifer location inside the subsurface using the cross borehole method. Electrodes are placed inside each boreholes and area between these boreholes are analysed. An aquifer is a non-uniform structure with complex shape which can represented by the truncated Fourier series. Deep neural network is evaluated as an inverse problem solver for estimating the aquifer boundary coefficients.

Estimation of Vibrational Power Supplied From Vibration Source to Supporting Structure (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정방법)

  • 김재철;이종원
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.306-312
    • /
    • 1998
  • This paper proposes a method for estimating the vibrational power supplied by a machine that generates excitation force to its supporting structure via the coupling points. The basis of the method is that the vibrational power can be calculated using the mechanical impedance and the velocity at the coupling points on the supporting structure. First, a method is described to estimate the mobilities at the coupling points when the machine is not separable from the supporting structure, then the vibrational power is calculated using the estimated mobilities and measured velocities at the coupling points. The mobilities are estimated from the result of impulsive testing of the coupled structure. The method is investigated using an experimental model. The estimated and measured values of the mobilities and the vibrational power are compared. It is shown that the estimated values agree well with the measured values.

  • PDF

An Algorithm for Applying Multiple Currents Using Voltage Sources in Electrical Impedance Tomography

  • Choi, Myoung-Hwan;Kao, Tzu-Jen;Isaacson, David;Saulnier, Gary J.;Newell, Jonathan C.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.613-619
    • /
    • 2008
  • A method to produce a desired current pattern in a multiple-source EIT system using voltage sources is presented. Application of current patterns to a body is known to be superior to the application of voltage patterns in terms of high spatial frequency noise suppression, resulting in high accuracy in conductivity and permittivity images. Since current sources are difficult and expensive to build, the use of voltage sources to apply the current pattern is desirable. An iterative algorithm presented in this paper generates the necessary voltage pattern that will produce the desired current pattern. The convergence of the algorithm is shown under the condition that the estimation error of the linear mapping matrix from voltage to current is small. Simulation results are presented to illustrate the convergence of the output current.

A Study of Electromagnetic Emission of 42' AC PDP Module

  • Lim, Hun-Yong;Kim, Min-Seok;Lee, Jeong-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.752-755
    • /
    • 2003
  • An EMI emission of 42" AC-PDP panel is studied in this paper. First, the EMI emission level is roughly estimated using both simple electric dipole type and magnetic dipole type radiator model. The value of current required for estimation has been obtained from Fourier Transform of the measured current in time domain. Second, we investigate which type of EMI radiation is dominant by FEM calculation of the wave impedance. The result shows that electric dipole type radiation is dominant EMI source.

  • PDF