Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.1.234

Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters  

Le, Phuong Minh (Dept. of Power Delivery, Hochiminh City University of Technology, VNU-HCM)
Pham, Xuan Hoa Thi (Dept. of Electrical and Electronic Engineering, University of Food Industry)
Nguyen, Huy Minh (Dept. of Power Delivery, Hochiminh City University of Technology, VNU-HCM)
Hoang, Duc Duy Vo (Dept. of Power Delivery, Hochiminh City University of Technology, VNU-HCM)
Nguyen, Tuyen Dinh (Dept. of Power Delivery, Hochiminh City University of Technology, VNU-HCM)
Vo, Dieu Ngoc (Dept. of Power Systems, Hochiminh City University of Technology, VNU-HCM)
Publication Information
Journal of Power Electronics / v.18, no.1, 2018 , pp. 234-250 More about this Journal
Abstract
This paper presents a new load sharing control for use between paralleled three-phase inverters in an islanded microgrid based on the online line impedance estimation by the use of a Kalman filter. In this study, the mismatch of power sharing when the line impedance changes due to temperature, frequency, significant differences in line parameters and the requirements of the Plug-and-Play mode for inverters connected to a microgrid has been solved. In addition, this paper also presents a new droop control method working with the line impedance that is different from the traditional droop algorithm when the line impedance is assumed to be pure resistance or pure inductance. In this paper, the line impedance estimation for parallel inverters uses the minimum square method combined with a Kalman filter. In addition, the secondary control loops are designed to restore the voltage amplitude and frequency of a microgrid by using a combined nominal value SOGI-PLL with a generalized integral block and phase lock loop to monitor the exact voltage magnitude and frequency phase at the PCC. A control model has been simulated in Matlab/Simulink with three voltage source inverters connected in parallel for different ratios of power sharing. The simulation results demonstrate the accuracy of the proposed control method.
Keywords
Droop control; Impedance estimation; Kalman filter; Microgrid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Moslehi and R. Kumar, “A reliability perspective of the smart grid,” IEEE Trans. Smart Grid, Vol. 1, No. 1, pp. 57-64, Jan. 2010.   DOI
2 R. H. Lasseter, "Microgrids," in Proc. IEEE Power Eng. Soc. Winter Meeting, pp. 305-308, 2002.
3 R. H. Lasseter and P. Paigi, "Microgrid: A conceptual solution," in Proc. IEEE Power Electron. Spec. Conf., pp. 4285-4290, 2004.
4 J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, "Control of power converters in AC microgrids," IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4734-4739 Nov. 2012.   DOI
5 A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M. Smit, “Management and control of domestic smart grid technology,” IEEE Trans. Smart Grid, Vol. 1, No. 2, pp. 109-119, Mar. 2010.   DOI
6 F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1398-1409, May 2006.   DOI
7 Q.-C. Zhong, “Robust droop controller for accurate proportional load sharing among inverters operated in parallel,” IEEE Trans. Power Electron., Vol. 60, No. 4, pp. 1281-1291, Apr. 2013.
8 R. Lasseter, "Microgrids," in Proc. IEEE Power Eng. Soc. Winter Meeting, pp. 305-308, 2002.
9 G. Weiss, Q.-C. Zhong, T. C. Green, and J. Liang, " $H_{\infty}$ repetitive control of DC-AC converters in microgrids," IEEE Trans. Power Electron., Vol. 19, No. 1, pp. 219-230 Jan. 2004.   DOI
10 J. Guerrero, J. Vasquez, J. Matas, M. Castilla, and L. Garcia de Vicuna, "Control strategy for flexible microgrid based on parallel line-interactive UPS systems," IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 726-736, Mar. 2009.   DOI
11 H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of power sharing control strategies for islanding operation of AC microgrids,” IEEE Trans. Smart Grid, Vol. 7, No. 1, pp. 200-216, Jan. 2016.   DOI
12 S. V. Iyer, M. N. Belur, and M. C. Chandorkar, “A generalized computational method to determine stability of a multi-inverter microgrid,” IEEE Trans. Power Electron., Vol. 25, No. 9, pp. 2420-2432, Sep. 2010.   DOI
13 J. Justo, F. Mwasilu, and J. Lee, "AC microgrids versus DC microgrids with distributed energy resources: A review," Renew. Sustain. Energy Rev., Vol. 24, pp. 387-405, 2013.   DOI
14 M. A. Eltawil and Z. Zhao, "Grid-connected photovoltaic power systems: Technical and potential problems -A review," Renew. Sustain. Energy Rev., Vol. 14, No. 1, pp. 112-129, 2010.   DOI
15 J. Guerrero, L. Garcia de Vicuna, J. Matas, M. Castilla, and J. Miret, "Output impedance design of parallel-connected UPS inverters with wireless load-sharing control," IEEE Trans. Ind. Electron., Vol. 52, No. 4, pp. 1126-1135, Apr. 2005.   DOI
16 P. Piagi and R. H. Lasseter, "Autonomous control of microgrids," in Proc. Power Eng. Soc. Gen. Meeting (2006), pp. 8-15.
17 M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone AC supply systems,” IEEE Trans. Ind. Appl., Vol. 29, No. 1, pp. 136-143, 1993.   DOI
18 J. M. Guerrero, J. C. Vasquez, and J. Matas, “Control strategy for flexible microgrid based on parallel line-interactive UPS systems,” IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 726-736, Mar. 2009.   DOI
19 J. Hu, J. Zhu, D. G. Dorrell, and J. M. Guerrero, “Virtual flux droop method - A new control strategy of inverters in microgrids,” IEEE Trans. Power Electron., Vol. 29, No. 9, pp. 4704-4711, Sept. 2014.   DOI
20 L. Y. Lu and C. C. Chu, “Consensus-based droop control synthesis for multiple DICs in isolated micro-grids,” IEEE Trans. Power Syst., Vol. 30, No. 5, pp. 2243-2256, Sept. 2015.   DOI
21 J. He and Y. W. Li, “An enhanced microgrid load demand sharing strategy,” IEEE Trans. Power Electron., Vol. 27, No. 9, pp. 3984-3995, Sep. 2012.   DOI
22 J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids - A general approach towards standardization,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 158-172, Jan. 2011.   DOI
23 W. Yao, M. Chen, and J. Matas, “Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing,” IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 576-588, Feb. 2011.   DOI
24 Hisham Mahmood, Dennis Michaelson, and Jin Jiang "Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances," IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1605-1618 Mar. 2015.   DOI
25 J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, "Advanced control architecture for intelligent microgrids - Part I: Decentralized and hierarchical control," IEEE Trans. Power Electron., Vol. 60, No. 4, pp. 1254-1262 Apr. 2013.
26 M. N. Marwali, J.-W. Jung, and A. Keyhani, "Control of distributed generation systems - Part II: Load sharing control," IEEE Trans. Power Electron., Vol. 19, No. 6, pp. 1551-1561, Jun. 2004.   DOI
27 Juan C. Vasquez, Josep M. Guerrero, Alvaro Luna, Pedro Rodriguez, and Remus Teodorescu "Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes," IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 4088-4098, Oct. 2009.   DOI
28 J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and R. Teodorescu, “Modeling, analysis, and design of stationary-reference frame droop-controlled parallel three-phase voltage source inverters,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1271-1280, Apr. 2013.   DOI
29 M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control scheme for voltage unbalanced compensation in an islanded droop controlled microgrid,” IEEE Trans. Smart Grid, Vol. 3, No. 2, pp. 797-807, May 2012.   DOI
30 M Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control for voltage quality enhancement in microgrids,” IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1893-1902, May 2012.   DOI
31 D. De and V. Ramanarayanan, “Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads,” IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 3015-3025, Dec. 2010.   DOI
32 Y. W. Li and C.-N. Kao, “An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid,” IEEE Trans. Power Electron., Vol. 24, No. 12, pp. 2977-2988, Dec. 2009.   DOI
33 H. Mahmood, D. Michaelson, and J. Jiang, “Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances,” IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1605-1617, Mar. 2014.   DOI
34 M. A. Abusara, J. M. Guerrero, and S. M. Sharkh, “Line-interactive ups for microgrids,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1292-1300, Mar. 2014.   DOI
35 J. He, Y. W. Li, J. M. Guerrero, J. C. Vasquez, and F. Blaabjerg, "An islanded microgrid reactive power sharing scheme enhanced by programmed virtual impedances," in Proc. IEEE Int. Symp. Power Electron. Distrib. Gener. Syst. 2012, pp. 229-235.
36 J. He, Y. W. Li, J. M. Guerrero, F. Blaabjerg, and J. C. Vasquez, “An islanding microgrid power sharing approach using enhanced virtual impedance control scheme,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5272-5282, Nov. 2013.   DOI