• Title/Summary/Keyword: Source Panel Method

Search Result 154, Processing Time 0.02 seconds

The Measurement and Prediction of Transmission loss through Dash Panel (대시 패널의 투과손실 측정 및 예측)

  • Kim Jung Soo;Kang Yeon June
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.191-194
    • /
    • 2004
  • This study Is an measurement and prediction of transmission loss through dash panel with multi-path in a vehicle. Measurement results of transmission loss are decided by sound power measured using the sound intensity method under locating a sound source in the anechoic room and reverberant room, respectively. Prediction one is decided by multi-path analysis of dash panel composed by a various part of materials and complicated shape. Finally, two results show a great agreement between measured and predicted transmission loss.

  • PDF

Potential Flow Analysis around Ship with Goose-neck Type Bulbous Bow Penetrating Free Surface (자유수면을 관통하는 거위목 벌브를 가진 선박 주위의 포텐셜 유동해석)

  • Choi, Hee-Jong;Park, Il-Heum;Kim, Jong-Kyu;Kim, Ok-Sam;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.18-22
    • /
    • 2011
  • The Ranking source panel method was used to predict the flow phenomenon of a ship with a goose-neck type bulbous bow penetrating the free surface. The non-linearity of the free surface boundary condition was fully satisfied using an iterative calculation method, and the raised panel method was adopted to obtain a more stable solution at each iteration step. The panel cutting method was applied to generate a hull calculation grid at each iteration step, including the first step. At that time, the nose of the goose-neck type bulbous bow was divided by the free surface and the free surface panel was modified at each iteration step using the variable free surface panel method. Numerical calculations were performed to investigate the validity and efficiency of the applied numerical algorithm using the 3600 TEU container carrier. The computed wave resistance coefficients were compared with the experimentally achieved residual resistance coefficients.

Numerical Analysis of Water Entry Behavior of the High Speed (고속으로 입수하는 물체의 입수 거동 해석)

  • Kim Y. W.;Park W. G.;Kim C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.167-174
    • /
    • 1998
  • The numerical methodology for simulating water entry behaviors of the high-speed bodies has been developed. Since the present method assumed the impact occurs within a very short time interval, the viscous effects do not have enough time to play a significant role in the impact forces, that is, the flow around a water-entry object was assumed as an incompressible potential flow and is solved by the source panel method. The elements fully submerged into the water are routinely teated, but the elements intersected by the effective planar free surface are redefined and reorganized to be amenable to the source panel method. To validate the present code, it has been applied to the ogive model and compared with experimental data. Good agreement has been obtained. The water entry behavior of the bouncing phenomena from the free surface has been also simulated using the impact forces and two degree of freedom dynamic equation. Physically, acceptable results have been obtained.

  • PDF

고속으로 입수하는 물체에 대한 충격량 해석

  • Kim Yeong U;Park Won Gyu;Kim Chan Su
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.190-201
    • /
    • 1998
  • The numerical methodology for computing the impact forces of the water entry bodies has been developed. The present method assumed the impact occurs within a very short time interval and the viscous effects do not have time enough to play a significant role in the impact forces, that is, the flow around a water-entry object was assumed as an inviscid potential flow and is solved by the source panel method. The elements fully submerged into the water are routinely treated, but the elements intersected with the effective planar free surface are redefined and reorganized to be amendable to the source panel method. To validate the present code, it has been applied to disk and ogive model and compared with experimental data. Good agreement has been obtained.

  • PDF

Verification of Prediction Technique of Wave-making Resistance Performance for a Ship attached with a Vertical Blade (수직날개를 부착한 선박의 조파저항 성능 추정 기법의 검증)

  • Choi, Hee-Jong;Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this paper the developed prediction technique of wave-making resistance performance for a ship attached with a vertical blade had been verified. Numerical analysis program as a prediction technique had been developed using the Rankine source panel method and the vortex lattice method(VLM). The nonlinearity of the free surface conditions was fully taken into account using the iterative method and the trim and the sinkage of the ship were also considered in the numerical analysis program. Panel cutting method was applied to get hull surface panels. Numerical computations were carried out for a 4000TEU container carrier and the vertical blade was attached 6 different locations astern. To investigate the validity of the numerical analysis program the commercial viscous flow field analysis program FLUENT was used to obtain the viscous flow field around the ship and the model test was performed. The model test results were compared with the numerical analysis results.

Evaluation of BSR Noise Properties of Instrument Panel in a Vehicle (자동차 계기판 BSR 소음특성 평가)

  • Shin, Su-Hyun;Cheong, Cheol-Ung;Kim, Duck-Whan;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.644-650
    • /
    • 2010
  • Among various elements to affect customer's evaluation of vehicle quality, BSR(Buzz, Squeak, Rattle) are considered to be a mostly contributing factor. In this paper, we provide the test method which can be used to reduce the BSR noise of instrument panel in a vehicle. First, potential source regions of the instrument panel for BSR are localized by using the vibration-excitor and near-acoustic field visualization system. Then, subjective evaluation of BSR noise from the detected potential noise source regions is made with the Zwicker's loudness and time-varying loudness methods. This illustrative analysis reveals that current experimental methods can be used as a test procedure to systematically tackle BSR issues in early stage of the vehicle development cycle, which can result in the reduction of the production cost.

A Simple ZVZCS Sustain Driver for a Plasma Display Panel

  • Yi Kang-Hyun;Han Sang-Kyoo;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.298-306
    • /
    • 2006
  • A high efficiency and low cost sustain driver for a plasma display panel (PDP) utilizing a current pumping method is proposed. The main concept of the proposed circuit is using the current source to charge and discharge the panel. As a result, all power switches can achieve zero voltage switching (ZVS) and every auxiliary switch can also achieve zero current switching (ZCS). Since the inductor current can compensate for the discharge current, the current stress of all the power switches can be reduced considerably. Furthermore, it has features such as a simpler structure, less mass, lower cost, and lower electromagnetic interference than in previous circuits.

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF

The Study for Vibro-acoustic Noise Analysis in the Fuselage of Regional Turboprop Airplane (중형항공기 동체 소음해석 기법 연구)

  • Park, Illkyung;Kim, Sungjoon;Jung, Jinduck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.44-50
    • /
    • 2012
  • The noise reduction is important one of considerations in the process of a civil aircraft development program. External noise sources are classified into an air-born source and a structure-born source. Among these noise sources, the most affected noise source into a cabin is the air-born noise source from an engine or propeller. The external noise is transmitted into the cabin through the fuselage structure of airplane which are composed of an fuselage structure, an interior trim panel and an acoustic insulation layer between an fuselage structure and an interior trim panel. Therefore, appropriate fuselage structure and acoustic insulation layer is very important to reduce the internal noise level. In this paper, the vibro-acoustic coupled analysis of the cabin noise of the 80~90 seats regional turboprop aircraft is carried out to validate the acoustic analysis method using Direct BEM and FEM. The sound pressure level onto the fuselage skin is acquired by fan-source noise analysis using BEM, and which sound pressure is used as acoustic noise source in vibro-acoustic noise analysis for cabin noise analysis using FEM.

Application of High Order Panel Method for Improvement of Prediction of Marine Propeller Performance (프로펠러 단독성능해석 향상을 위한 고차패널법의 적용)

  • Kim, Gun-Do;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.113-123
    • /
    • 2005
  • A higher order panel method based on B-spline representation for both the geometry and the solution is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then shown to be evaluated using conventional numerical quadrature. By selecting a proper order for numerical quadrature, the accuracy of the present method can be increased to the machine limit. The far- and near-field influences are shown to be evaluated based on the same far-field approximation, but the near-field solution requires subdividing the panels into smaller subpanels continuously, which can be effectively implemented due to the B-spline representation of the geometry. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution on the blade surface, including very close to the tip and trailing edge regions, with far fewer panels than existing low order panel methods.