• Title/Summary/Keyword: Source Driver

Search Result 203, Processing Time 0.016 seconds

A XML Based Framework for Automatically Generating Control and Monitoring Software (제어 및 모니터링 소프트웨어 자동 생성을 위한 XML 기반 프레임웍)

  • Yoo Dae-Seung;Kim Jong-Hwan;Yi Myeong-Jae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2006
  • In this paper, we present a framework which is used to develop, modify, maintain and extend a control and monitoring software easily for any kind of automatic instruments. The proposed framework is composed of three XML documents (IID, MAP, CMIML) and two tools (Virtual Instrument Wizard, Generator). Interface information of behaviors and states of instrument is written on IID. Mapping information between the interface information in IID and API of a real instrument driver is written on MAP Final information of the control and monitoring software is written on CMIML, IID, MAP and CMIML are written by XML format to provide a common usage and platform independence of the proposed framework. Vl Wizard generates CMIML intermediate platform independent document using IID and existing CMIML, and Generator generates the source code of a control and monitoring software platform dependent code automatically using CMIML and MAP. The suggested framework provides an easy development and maintenance because it automatically generates a control and monitoring software in GUI environment and it also provides common usage and platform independence in virtue of using description document of XML format. Also, reusability can be increased by reusing platform independent software description document and not reusing platform dependent software code.

Contemplation of Korean Offshore Wind Industry Development (한국의 해상풍력산업 발전전략 고찰)

  • Kim Jong-hwa
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.5-10
    • /
    • 2024
  • Offshore wind power generation has significant advantages, including enhanced energy security and job creation. However, despite these benefits, South Korea has not fully utilized its potential in this sector. In contrast, offshore wind power industry development in Europe has been driven by government leadership. Drawing from this experience, South Korea also needs to relax regulations, strengthen necessary infrastructure, and enhance financial support systems to activate the offshore wind power industry. For this, sustained government leadership is absolutely essential. Without addressing the capacity issues in the power grid, we cannot expect offshore wind power generation to succeed. To address grid issues, we propose the enactment of a special law called the "Special Act on Grid Expansion." Considering KEPCO's financial situation, private investment should be encouraged for grid construction. The role of developers is crucial for the successful development and operation of offshore wind power. They manage risks throughout various stages, from site acquisition to construction and operation, which have a significant impact on the success or failure of projects. Since domestic developers currently lack experience in offshore wind power, a cooperative strategy that leverages the experience and technology of advanced countries is necessary. Energy issues should be recognized as important tasks beyond mere political ideologies, as they are crucial for the survival of the nation and its development. It is essential to form a public consensus and implement ways for residents to coexist with offshore wind power, along with the conservation of marine ecosystems and effective communication with stakeholders. Expansion of the offshore wind power industry requires support in various areas, including financial and tax incentives, technology research investment, and workforce development. In particular, achieving carbon neutrality by 2050 necessitates the activation of offshore wind power alongside efforts by major corporations to transition to renewable energy. South Korea, surrounded by the sea, holds significant offshore wind power potential, and it is our responsibility to harness it as a sustainable energy source for future generations. To activate the offshore wind power market, we need to provide financial and tax support, develop infrastructure and research, and foster a skilled workforce. As major corporations transition to renewable energy to achieve carbon neutrality by 2050, offshore wind power must play a significant role. It is our responsibility to fully utilize South Korea's potential and make offshore wind power a new driver of growth.

Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies (초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계)

  • Choi Hoon-Dae;Min Kyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.21-32
    • /
    • 2006
  • A new SRAM circuit with row-by-row activation and low-swing write schemes is proposed to reduce switching power of active cells as well as leakage one of sleep cells in this paper. By driving source line of sleep cells by $V_{SSH}$ which is higher than $V_{SS}$, the leakage current can be reduced to 1/100 due to the cooperation of the reverse body-bias. Drain Induced Barrier Lowering (DIBL), and negative $V_{GS}$ effects. Moreover, the bit line leakage which may introduce a fault during the read operation can be eliminated in this new SRAM. Swing voltage on highly capacitive bit lines is reduced to $V_{DD}-to-V_{SSH}$ from the conventional $V_{DD}-to-V_{SS}$ during the write operation, greatly saving the bit line switching power. Combining the row-by-row activation scheme with the low-swing write does not require the additional area penalty. By the SPICE simulation with the Berkeley Predictive Technology Modes, 93% of leakage power and 43% of switching one are estimated to be saved in future leakage-dominant 70-un process. A test chip has been fabricated using $0.35-{\mu}m$ CMOS process to verify the effectiveness and feasibility of the new SRAM, where the switching power is measured to be 30% less than the conventional SRAM when the I/O bit width is only 8. The stored data is confirmed to be retained without loss until the retention voltage is reduced to 1.1V which is mainly due to the metal shield. The switching power will be expected to be more significant with increasing the I/O bit width.