• Title/Summary/Keyword: Source Calibration

Search Result 387, Processing Time 0.022 seconds

Three-dimensional Reconstruction of X-ray Imagery Using Photogrammetric Technique (사진측량기법을 이용한 엑스선영상의 3차원 모형화)

  • Kim, Eui Myoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.277-285
    • /
    • 2008
  • X-ray images are wildly used in medical applications, and these can be more efficiently find scoliosis which is appearing during the growth of human skeleton than others. This research is focused on the calibration of X-ray image and three-dimensional coordinate determination of objects. Three-dimensional coordinate of objects taken by X-ray are determined by two step procedure. Firstly, interior and exterior orientation parameters are determined by camera calibration using Primary Calibration Object (PCO) which has two sides with embedded radiopaque steel ball. Secondly, calibration cage coordinates which is composed of two acrylic sheets that are perpendicular to X-ray source are determined by the parameters. Three-dimensional coordinates of calibration cage determined by photogrammetric technique are compared with that of Coordinate Measuring Machine (CMM). Though the accuracy analysis, X direction which is parallel to X-ray source error values are relatively higher than those of Y and Z directions. But, the accuracies of Y and Z axis are approximately -3 mm to 3 mm. From the research results, it is considered that photogrammetric technique is applied to determine three-dimensional coordinates of patients or assist to make medical devices.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Dose Distribution&Calibration in HDR Intracavitary Irradiation for Uterine Cervical Cancer (자궁경부암의 강내치료를 위한 선량측정)

  • 김진기;김정수;김형진;권형철
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • Dose distribution of HDR-RALS source represents an inverse square law as the distance. Difference of measurement value and calculation value according of brachytherapy. Therefore, in HDR-RALS dose calibration and calculation have an important effect in treatment of uterine cervical cancer and absorbed dose of interesting points. In intracavitary therapy, particula attention is paid for precise determination of the doses to be applied. In this report, we have discussed that the calibration of a HDR-RALS, differences between calculation dose use of isodose chart and measurement in rectum. Dose rate calibration of radiation sources are obtained from air kerma and Г factor with calibraed ion chamber for cobalt source. and used semiconductor detector for compared with measurement in phantom. Eighteen patients were treated with a HDR-RALS for intrcavitarty irradiation (ICR) using a cobalt-cesium source. Repoductivity of dose measurements were 0.3 -1.1% in phantom. The means of dose distribution was -6- +21% between calculation of isodose chart and measurement of recyum, and was same mean value upper 6.3% in measurement value than calculation does.

  • PDF

The Calibration of $^{90}$ Sr Ophthalmic Applicator by Measuring Electron Current (전류 측정 방식에 의한 안과용 $^{90}$ Sr 선원의 교정)

  • 이병용;신동오;김현자;홍성언;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.149-154
    • /
    • 1991
  • We have designed and applied the calibrationmethod of $\^$90/Sr Ophthalmic Applicaton by measuring the electron currents. We considered the number of electrons which is emitted from the source, the area of the source, and the electron stopping power in the water, and those data were used for calculation. Film was used for evaluating the accurate source area. Average electron stopping power was obtained by analyzing ${\beta}$-ray energy spectrum. We compared between the result from our method and that from the TLD measurements. The calibration result from our method shows 63.3 ${\pm}$5.1 cGy/sec, while 50.7${\pm}$7.3 cGy/sec from TLD measurement. But the supplier's specification tells 46.89.4cGy/sec.

  • PDF

Calibrating Electrode Misplacement in Underwater Electric Field Sensor Arrays for the Electric Field-Based Localization of Underwater Vessels (수중 이동체의 전기장 신호 기반 위치추정을 위한 수중 전기장 배열센서의 전극 부설 위치 오차 보정 방법)

  • Kim, Jason;Lee Ingyu;Bae, Ki-Woong;Yu, Son-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.330-336
    • /
    • 2022
  • This paper proposes a method to calibrate the electrode misplacement in underwater electric field sensor arrays (EFSAs) for accurate measurements of underwater electric field signatures. The electrode misplacement of an EFSA was estimated by measuring the electric field signatures generated by a known electric source and by comparing the measurements with the theoretical calculations under similar measurement conditions. When the EFSA measured the electric field signatures induced by an unknown electric source, the electric properties of the unknown electric source were approximated by considering the optimized estimation of the electrode misplacement of the EFSA. Finally, the measured electric field signatures were calibrated by calculating the theoretical electric field signatures to be measured with an ideally installed EFSA without electrode misplacement; the approximated electric properties of the unknown electric source were also taken into account. Simulations were conducted to test the proposed calibration method. The results showed that the electrode misplacement could be estimated. Further, the electric field measurements and the electric field-based localization of underwater vessels became more accurate after the application of the proposed calibration method. The proposed method will contribute to applications such as the detection and localization of underwater electric sources, which require accurate measurements of underwater electric field signatures.

A Highly Expandable Forwarded-Clock Receiver with Ultra-Slim Data Lane using Skew Calibration by Multi-Phase Edge Monitoring

  • Yoo, Byoung-Joo;Song, Ho-Young;Chi, Han-Kyu;Bae, Woo-Rham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.433-448
    • /
    • 2012
  • A source-synchronous receiver based on a delay-locked loop is presented. It employs a shared global calibration control between channels, yet achieves channel expandability for high aggregate I/O bandwidth. The global calibration control accomplishes skew calibration, equalizer adaptation, and phase lock of all the channels in a calibration period, resulting in the reduced hardware overhead and area of each data lane. In addition, the weight-adjusted dual-interpolating delay cell, which is used in the multiphase DLL, guarantees sufficient phase linearity without using dummy delay cells, while offering a high-frequency operation. The proposed receiver is designed in the 90-nm CMOS technology, and achieves error-free eye openings of more than 0.5 UI across 9-28 inch Nelco4000-6 microstrips at 4-7 Gb/s and more than 0.42 UI at data rates of up to 9 Gb/s. The data lane occupies only $0.152mm^2$ and consumes 69.8 mW, while the rest of the receiver occupies $0.297mm^2$ and consumes 56.0 mW at the 7- Gb/s data-rate and supply voltage of 1.35 V.

A Comparison of Calibration Methods for the COCOMO II Post-Architecture Model (COCOMOII의 후구조 모델에 대한 캘리브레이션 방법 비교)

  • Yoon, Myoung-Young
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.05a
    • /
    • pp.135-143
    • /
    • 2000
  • The COCOMO Ⅱ model is well-suited for the new software development life cycle such as non-sequential and rapid-development processes. The traditional regression approach based on the least square criterion is the most commonly used technique for empirical calibration in the COCOMO Ⅱ model. But it has a few assumptions frequently violated by software engineering data sets. It is true that the source data is also generally imprecise in reporting size, effort, and cost-driver ratings, particularly across different organizations. And that the outlier for the source data is a peculiarity and indicates a data pint To cope with difficulties, in this paper, we propose a new regression method for calibrating COCOMO Ⅱ post-architecture model based on the minimum relative erro(MRE) criterion. The characteristic of the proposed method is insensitive to the extreme values of the data in the empirical calibration. As the experimental results, It is evident that our proposed calibration method MRE was shown to be superior to the traditional regression approach for model calibration, as illustrated by the values obtained for standard deviation(^σ), and prediction at level L PRED(L) measures.

  • PDF

Novel Calibration Method of Noise Figure Analyzer and Measurement of Noise Correlation Matrix (잡음지수분석기의 새로운 교정방법과 잡음상관행렬 측정)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.491-499
    • /
    • 2018
  • The conventional calibration method for a noise figure analyzer is to use a noise source. This method is accompanied by a significant irregular ripple in the measurement results, because it does not consider the mismatch of the noise source and noise figure analyzer during calibration. A novel calibration method of the noise figure analyzer is proposed that considers the mismatch between the noise power and noise figure analyzer. A novel noise correlation matrix measurement technique using this method is also proposed. The method determines the noise correlation matrix and the gain of the uncorrected noise figure analyzer using uncorrected noise powers. Then, having determined the gain and noise correlation matrix, the effects of noise figure analyzers were corrected in the measurement results of the noise correlation matrix for the device under test (DUT). Through the proposed method, the measured noise parameters of a DUT showed the same degree of irregular ripples as the result of using the relative noise ratio.

Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

  • Agbo, Sunday Arome;Ahmed, Yusuf Aminu;Ewa, Ita Okon Bassey;Jibrin, Yahaya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.673-683
    • /
    • 2016
  • This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was $3.7{\pm}0.2kW$, $15.2{\pm}1.2kW$, and $30.7{\pm}2.5kW$, respectively. The thermal power obtained by the slope method at half power and full power was $15.8{\pm}0.7kW$ and $30.2{\pm}1.5kW$, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

An Improved Calibration Method for the COCOMO II Post-Architecture Model

  • Yoon, Myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.47-55
    • /
    • 2000
  • To date many software engineering cost models have been developed to predict cost, schedule, and effort of the software under development. The COCOMO Ⅱ is well- suited for the new software development life cycle such as non-sequential and rapid- development processes. The traditional regression approach based on the least square criterion is the most commonly used technique for empirical calibration in the COCOMO Ⅱ model. It has a few assumptions frequently violated by software engineering data sets. The source data is also generally imprecise in reporting size effort, and cost-driver ratings, particularly across different organizations. And that the outlier for the source data is a peculiarity and indicates a data point. To cope with difficulties, in this paper, we propose a new regression method for calibrating COCOMO Ⅱ post-architecture model based on the minimum relative error(MRE) criterion. The characteristic of the proposed method is insensitive to the extreme values of the data in the empirical calibration. As the experimental results, It is evident that our proposed calibration method MRE was shown to be superior to the traditional regression approach for model calibration, as illustrated by the values obtained for standard deviation(^σ), and prediction at level LPRED(L) measures.

  • PDF