• Title/Summary/Keyword: Sound waves

Search Result 271, Processing Time 0.039 seconds

An analysis of acoustic pressure in the center of double pipe inside of a cylindrical vibrator (원통형 진동자 내부의 이중관 중심에서의 음압해석)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.165-171
    • /
    • 2017
  • The effect of the concentric solid tube inserted inside the vibrator on the sound field distribution was analyzed for the sound waves focused on the center axis in the fluid - filled cylindrical piezoelectric transducer. The sound waves radiated from the inside of the cylindrical piezoelectric vibrator are transmitted through the fluid medium and are reflected or transmitted on the wall surface of the solid tube, and are focused on the central axis. At this time, the sound field distribution centered on the acoustic tube varies depending on the acoustic impedance and the thickness of the solid tube. In order to theoretically analyze this, the transfer matrix for each medium is derived, and the sound pressure level at the center axis is theoretically analyzed. For the acrylic tube with various thicknesses, the changing trend in the sound pressure level measured on the central axis agrees well with the result of the theoretical analysis, and it confirmed that the sound pressure formed at the center changes very sensitively with the thickness of the solid tube.

Acoustic Properties of Solid Materials: Sound Speed, Transmission Coefficient, and Attenuation

  • Roh Heui-Seol;Lee Kang Il;Jung Kyung-Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.525-528
    • /
    • 2002
  • The speed of sound, transmission coefficient, and attenuation are measured around the center frequency 1 and 2 MHz in solid materials such as bone, sediment, rubber, and Lucite materials. Common and different characteristics of such materials in the sound speed, transmission coefficient, and attenuation are discussed. Ambiguities in estimating such acoustic characteristics we also addressed. Ultrasonic properties of the first and second kind waves are clarified for different materials. Discussions are concentrated on classes of sound speed, broadband ultrasonic attenuation (BUA), and correlations of sound speed and BUA with apparent density. New correlations of inverse sound speed square and BUA with apparent density are suggested.

  • PDF

Outdoor Noise Propagation: Geometry Based Algorithm (옥외 소음의 전파: 음 추적 알고리즘)

  • 박지헌;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.339-438
    • /
    • 2002
  • This paper presents a method to simulate noise propagation by a computer for outdoor environment. Sound propagated in 3 dimensional space generates reflected waves whenever it hits boundary surfaces. If a receiver is away from a sound source, it receives multiple sound waves which are reflected from various boundary surfaces in space. The algorithm being developed in this paper is based on a ray sound theory. If we get 3 dimensional geometry input as well as sound sources, we can compute sound effects all over the boundary surfaces. In this paper, we present two approaches to compute sound: the first approach, called forward tracing, traces sounds forwards from sound sources. while the second approach, called geometry based computation, computes possible propagation routes between sources and receivers. We compare two approaches and suggest the geometry based sound computation for outdoor simulation. Also this approach is very efficient in the sense we can save computational time compared to the forward sound tracing. Sound due to impulse-response is governed by physical environments. When a sound source waveform and numerically computed impulse in time is convoluted, the result generates a synthetic sound. This technique can be easily generalized to synthesize realistic stereo sounds for virtual reality, while the simulation result is visualized using VRML.

Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method (격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산)

  • Kang Ho-Keun;Ro Ki-Deok;Son Kang-Pil;Choi Min-Sun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet (축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF

Development of an Impedance Matching Layer in an Ultrasound Transducer with Gradient Properties

  • Jeong, Jihoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.374-379
    • /
    • 2018
  • The piezocomposite transducer is widely used because it is highly efficient in transforming electric energy into mechanical energy, and its frequency range is broader than that of other types of ultrasound transducers. A general piezocomposite transducer is composed of an acoustic lens, impedance matching layers, piezoelectric materials, and backing layers. When an input voltage is applied to a piezoelectric material as an active material, it generates sound waves while vibrating. At that time, an impedance matching layer helps the sound waves to propagate forward while reducing the impedance mismatch that may occur at the interface between the active material and its front material. The impedance mismatch has a negative effect on the signal of an ultrasound transducer; thus, it is important to design a matching layer to overcome the issue. In this study, an optimized feature of a matching layer with gradient properties is studied. An objective function is defined to minimize both the average and the deviation of the reflection coefficients that are functions of the frequencies. As a result, an improvement in the signal characteristics with respect to the sensitivity and bandwidth is reported.

Source Identification in an Interior Sound Field (반사파가 존재하는 실내 공간에서의 음원 탐지 방법)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1203-1209
    • /
    • 2001
  • Identification of noise sources, their locations and strengths, have been taken great attention. The method that can identify noise sources normally assumes that noise sources are located at a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field, reflections are added to sound field. Therefore, we have to consider the reverberation effect on the source identification method. The main objective of this paper is to identify noise source in the reverberant field. At fist, we try to identify noise sources in a rigid wall enclosure using the spherical beamforming method. In many case of practical interest, the wall has an admittance so that complex reflection process occurred. In this paper, we assumed the complex reverberant field in the enclosure to be the sum of plane waves with random incidence and magnitude. Then the effects of reverberant field at interior source identification have been studied theoretically as well as experimentally

  • PDF

The Effect of the Disturbing Wave on the Speech Intelligibility of the Eavesdropping Sound of a Window Glass (교란파가 유리창 진동음의 음성명료도에 미치는 영향)

  • Kim, Seock-Hyun;Kim, Hee-Dong;Heo, Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.888-894
    • /
    • 2007
  • The speech sound is detected by the vibration measurement of the window glass. In this study, we investigate the effect of the disturbing waves by background noise and window shaker excitation on the speech intelligibility of the detected sound. Based upon Modulation Transfer Function(MTF), speech intelligibility of the sound is objectively estimated by Speech Transmission Index(STI) As the level of the disturbing wave varies, variation of the speech intelligibility is examined. Experimental result reveals how STI is influenced by the level and frequency characteristics of the disturbing wave. By using a customized window shaker for disturbing sound, we evaluate the efficiency and the frequency characteristics of the anti-eavesdropping system. The purpose of the study is to provide useful information to prevent the eavesdropping through the window glass.

Identification of Sound Source Location Generated by Shock Wave for Medical Treatment (의료용 충격파에 의해 발생하는 음원 위치의 확인)

  • 장윤석;김석재
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.453-458
    • /
    • 2003
  • When the piezoelectric extracorporeal shock wave lithotripter is operated. sounds are generated. In this paper, we present a fact that the sounds are radiated undoubtedly from the object to be hit by the shock waves. For this results. we use the method to identify the sound source location of the radiated sounds by estimating the distance and the bearing from the sound source using one hydrophone. In addition. we investigate the relation between the radiated sounds and the vibrations of the objects using bronze models of disc type with clear vibrating characteristics and present the results of experiments to be analyzed.

Noise and Vibration Characteristics of Heavy-weight floor impact by Using Damping Materials (감쇠재 사용에 따른 중량충격음의 소음 및 진동특성)

  • Jeon, Jin-Yong;Jeong, Young;Song, Hee-Soo;Kim, Min-Bae;Lee, Young-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.97-102
    • /
    • 2004
  • The Characteristics of noise and vibration by heavy-weight floor impact sound was studied. Resonance frequency increased a little in structures that use damping material in living room and bedroom, and acceleration waves length that respond became short, and displayed aspect that oscillation level decreases. Result that measure sound pressure level, structure that compare and applies damping materials with structure that apply the resilient materials from 63Hz lower part that impact energy is concentrated in energy spectrum of heavy-weight floor impact sound displayed result that sound pressure, level decreases remarkably. Therefore, according to use of damping materials, confirmed reduction effect of heavy-weight floor impact sound.

  • PDF