• Title/Summary/Keyword: Sound reduction

Search Result 827, Processing Time 0.029 seconds

The effect of the flange attached to the inclined exit of tube on the noise radiation (관 경사출구에 부착된 플랜지가 소음방사에 미치는 영향)

  • Baek, Du-San;Yang, Yoon-Sang;Lee, Dong-Hoon;Lee, Yeong-gyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.134-137
    • /
    • 2014
  • The noise reduction performance of a passive facility is dependent on the its length or volume. In other words, this means that the larger the size of passive facility is, the better the noise reduction performance is. The sound directivity control has been proposed as an alternative for the noise reduction without a passive facility. The purpose of this study is to investigate the correlation between the flange attached to inclined exit of the tube and sound directivity when the sound radiates from the tube to the outside. As a result, the sound radiated from flanged tube had weak sound directivity in the wide angle. Also as the flange was bigger, the sound pressure level was lower in the behind the flange.

  • PDF

Acoustic Power Control of a Lightly-Damped Enclosed Sound Field

  • Kim, Woo-Young;Kim, Dong-Kyu;Hwang, Won-Gul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This research attempts to find an active control strategy which reduces acoustic power and acoustic energy in lightly-damped enclosed sound field such as a vehicle compartment or an operating room of heavy industrial machinery. An active control strategy, which takes into consideration of the acoustic radiation power of the source as a cost function, is formulated and examined to find capability of reducing noise. An adaptive filtering algorithm for sound power control is suggested and implemented to control lightly-damped sound field. To verify the method, sound power based active noise control algorithm was implemented on a rectangular box with lightly-damped wall, and popular acoustic energy based control with modal coupling reduction was performed to compare the noise reduction performance. It was shown that a total sound power based strategy provides a practical mean for global noise reduction for lightly damped sound field.

  • PDF

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

A Research on the Digital Restoration of the Analog by Removing Hiss Noise (Using X-NOISE Based on Hiss-Noise Reduction) (히스 노이즈제거를 통한 아날로그의 디지털 복원에 대한 연구 - X-NOISE를 활용한 히스 노이즈리덕션을 중심으로 -)

  • Byun, Jung Min;Doo, Ill Chul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Analog cassette tapes are easily changed due to environmental factors. To digitize is the best way to preserve a sound source. The way to digitize is to deal with the original sound to be enhanced to a variety of sources by playing through the audio card after recording. In this process to occur, it's the most important to remove various noise and equalizing sound in a method for preserving. It's studied about how to remove noise by using one of softwares, Cubase 5. 5, to remove hiss noise, which happens changing analog tape into digitalization. A amount of hiss noise is reduced to use X-Noise software of Wave which uses in Cubase 5.0, one of PLUG-IN. The noise is removed changing value of threshold and reduction every 10 times in no change of origin sound. To keep regular condition, the experiment to remove the hiss noise is conducted based on sound meondle, which is one of sound Nonmaegi. The noise is removed easily when the value of threshold is getting high in spite of giving a little value of reduction. However, as it gives a amount of reduction high, the damage rate of the sound source gets high.

A Study on an Analysis of Noise Reduction Effects using the tentatively Installed Sound-absorbing Materials in Metro Tunnel (도시철도 터널내 흡음재 시험설치 및 소음저감효과 분석에 관한 연구)

  • Hong, Chul-Kee;Jeong, Ri-Taek;Kim, Byeong-Hong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.125-131
    • /
    • 2008
  • This research tries to analyze and investigate the effects of the noise reduction test for the sound-absorbing materials installed tentatively on Metro Line 5. Though the noise reduction effects of each sound-absorbing material showed that there was about $2{\sim}5\;dB$ compared with before and after of the tentative installation, it shows that the noise reduction effects are reducing because of the section change condition such as dust absorption and the rail abrasion as time passes after the tentative installation. Also, many difficulties are occurring in the maintenance of the orbit facilities because of the installation of sound-absorbing materials. Though various abroad products for noise reduction are imported like this, the researches for the noise reduction effect increase for this and the improvement direction are being required because of the poor circumstance of the efficiency aspect compared to the economic investment effect because those are not suited to the character of domestic Metro.

  • PDF

Development and Evaluation for Improvement of the Sound Insulation of Balcony Window in Apartment (차음성능 향상을 위한 발코니 창호의 개발 및 평가)

  • Kim, Ha-Geun;Kim, Myung-Jun;Oh, Jin-Kyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.519-526
    • /
    • 2005
  • Recently, the interest on the comfortable dwelling environment is increasing and the effort to solve the problem of exterior noise was tried. The propose of this study is to suggest the design of balcony window in apartment and to evaluate the sound insulation of it. So, we designed five types of balcony window which were considered not only sound insulation but ventilation. The sound reduction index of window was evaluated by the measurement in mock-up room. The results showed that case 2 improved about 6 dB in the weighted apparent sound reduction index than case 1, and case 3 reduced about $39 \%$ in construction cost than case 4.

Development and Evaluation for Improvement of the Sound Insulation of Balcony window in Apartment (차음성능 향상을 위한 발코니 창호의 개발 및 평가)

  • Oh, Jin-Kyun;Kim, Ha-Geun;Kim, Myung-Jun;Kim, Yun-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.445-450
    • /
    • 2004
  • Recently, the interest on the comfortable dwelling environment is increasing and the effort to solve the problem of exterior noise was tried. The propose of this study is to suggest the design of balcony window in apartment and to evaluate the sound insulation of it. So, we designed five types of balcony window which were considered not only sound insulation but ventilation. The sound reduction index of window was evaluated by the measurement in mock-up room. The results showed that case 2 improved about 6dB in the weighted apparent sound reduction index than case 1, and case 3 reduced about 39% in construction cost than case 4.

  • PDF

Absorption Characteristics of Sound Proof Wall by Scrap Aluminum and Perforated Plate (알루미늄칩과 타공판을 이용한 방음벽 충진재의 흡음특성)

  • Lee, Young-Jung;Kim, Dae-Gun;Park, Kyung-Hwa;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.382-385
    • /
    • 2009
  • Efforts to reduce noise in industrial application fields, such as automobiles, aircrafts, and plants have been gaining considerable attention while a sound proof wall to protect people from the noise has been intensively investigated by many researchers. In this study, our research group suggested creating a new sound proof wall composed of scrap aluminum chips and perforated plates in a commercial polyester sound proof wall, which was then successfully fabricated. This wall's sound absorption characteristics were measured by an impedance tube method. The sound absorption property was evaluated by measuring the Noise Reduction Coefficient (NRC) to the standard, ASTM C 423-90a. The noise reduction coefficient of the sound proof wall composed of 3.5 vol.% and 7.5 vol.% of scrap aluminum chips relatively increased to 5% and 8% compared to the commercial polyester sound proof wall. The scrap aluminum perforated plate also relatively increased to 13% compared to the commercial polyester sound proof wall.

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • 김경우;최경석;최현중;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.131-136
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.

  • PDF

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • Choi Gyoung-Seok;Choi Hyun-jung;Yang Kwan-Seop;Kim Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.811-818
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.