• Title/Summary/Keyword: Sound pressure

Search Result 1,364, Processing Time 0.03 seconds

Reducing the Interior Noise of the Korean High-speed Train Using Geometric Acoustic Method (기하음향 기법을 적용한 한국형 고속철도 실내소음 저감 방안)

  • Kim, Kwan-Ju;Park, Jin-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.431-436
    • /
    • 2002
  • The interior sound pressure level of the Korean high-speed train(KHST) is predicted by geometrical acoustic method. For the Purpose of assuring the prediction of Interior noise of KHST by the geometrical acoustic scheme, calculated sound level values of the Korean train express(KTX) by Identical geometrical method are compared with measured values of KTX prototype vehicle by experiment. Contribution of individual sound source of KHST vehicle Into the interior response positions is calculated and sound sources are classified in influential order. Hence, it is reasonable approach to reduce sound power of most contributing noise source first. Sensitivity of the interior response position's sound pressure level (SPL) with respect to train wall sections' transmission loss are carried on and acoustically sensitive spot is identified, for example window area for passenger cabin case. Those contribution and sensitivity analysis results are suggested to design quieter train efficiently.

The Noise Reduction Effect by the Enclosure of Gas Turbines (가스터빈 차폐막의 소음 저감효과에 관한 연구)

  • Park, Dae Hun;Shin, Yoo In;Park, Sung Gyu;Kim, Kang Il;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.287-292
    • /
    • 2017
  • A gas turbine is the main equipment used in a combined heat and power plant. It generates a high sound pressure noise level. To reduce the noise level, an enclosure is installed around the turbine. The sound insulation performance of the enclosure affects the amount of external noise reduction. In this study, a sound transmission loss analysis is performed using the boundary element method to predict sound insulation performance according to the numbers and shapes of the supporter. Radiated noise analysis is also performed for the main external points of the enclosure using ray-acoustics. The results of these analyses are presented and a design plan is proposed that reduces the sound pressure noise level of the enclosure.

Experimental Study on Subjective Evaluation of Car Interior Sound Quality (승용차 내부소음의 음질평가 실험연구)

  • 최병호;아우구스트쉬크
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.177-182
    • /
    • 2003
  • This study is directed toward determining the number and characteristics of psychologically meaningful perceptual dimensions required for assessing the sound Ouaiity with respect to vehicle interior and/or exterior noises. and toward identifying the acoustical or psychoacoustical bases underlying the perception. By nonmetric MDS and clustring analysis of sound quality data sets on our own, of critical importance are two perceptual dimensions for which subjective verdicts can be interpreted as loudness and sharpness. The perceptual dimensions based upon similarity judgments could be accounted for 48% and 24% of the variance. each of which might be a match for the acoustic parameter "A-weighted maximum pressure level"(r= .85) and for the psychoacoustic parameter "sharpness" (r= .65), respectively. On the other hand, the perceptual dimensions based upon preference ratings could explain 66% and 10% of the variance. where the acoustic parameter "A-weighted maximum pressure leve"(r= .92) might be taken to be a best predictor, but sharpness appeared to be less suitable for the description of Preference behavior. Linked to the results, the problems of quantitative modelling of subjective sound quality evaluation and also of implementing corresponding cognitive combination rule for technical and industrial applications, say having "winner-sound qualify" according to preference criteria will be shortly in discussion.

  • PDF

The vibration and noise characteristics analysis of Sound Insulation Panel for Transformer (변압기용 차음판의 진동 소음 특성 분석)

  • Joeng, Han-E;Kim, H.J.;Gu, D.S.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.78-82
    • /
    • 2006
  • Recently, The demands for the reduction of noise generated by transformers have been increasing. Almost all of the noise generated by transformers is a result of magnetostricitive vibration in the core. The noise radiates into the atmosphere from the tank through the insulation oil. As the noise of transformer irritates residents, needs for decreasing the noise of transformer have been arised. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer. However, this method has some disadvantages. Another method of noise reduction is to mount a close-fitting sound insulation panel on the side of a transformer tank. Side plate vibrations of transformer are transmitted to such a sound insulation panel along two paths. In one case, they are transmitted through air by sound pressure and in the other through supporting structures. In the paper, the vibration and noise effect which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel and damping sheet analytically and experimetally.

  • PDF

Development of the Ultra-Silence Refrigerator with Considering Consumer's Hearing (소비자 청감을 고려한 초 저소음 냉장고 개발)

  • Joo, Jae-Man;Lee, Jea-Won;Lee, Jin-Woo;Jeoung, Jeoung-Kyo;Kim, Yong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.435-438
    • /
    • 2005
  • Until now, a home appliance mostly has revealed physical quantities created by the standpoint of engineers, by using the A-weighted sound pressure level and the sound power. It is, however, obviously impossible to characterize a complex sound with a single number. Many parameters must be considered. In addition to loudness, we must take into account frequency and amplitude variation over time, spectral balance, tonality, and many other attributes. Thus, in this research, the general tendency of consumer psychology was investigated for the refrigerator's sound. The noise from the refrigerator was evaluated by not only the simple sound pressure levels but also the consumer's sense of hearing. And also, in order to improve the quality of sound through the design change, the consumer's evaluation was analysed and related to the engineering quantities. With the several design changes, finally the most silence refrigerator in the world was developed with considering the consumer's hearing of sense.

  • PDF

Performance of floor coverings by impact sound (실 충격원에 대한 바닥마감재 성능 분석)

  • Chung, Jinyun;Im, Jungbin;Lee, Sungchan;Kim, Kyoungwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.419-422
    • /
    • 2014
  • Floor impact sound level is affected by various factors. This study was examined about impact sources and floor coverings influenced at floor impact sound. So this study wishes to get method to reduce sound pressure level of receiving room. Light-weight impact sound in mid frequency and Heavy-weight impact sound in low frequency was affected by floor coverings. Therefore, method to reduce floor impact sound level is to use proper floor coverings. Some coverings can amplify the heavy-weight impact sound in low frequency. Floor impact sound sources used measurement and analysis were standard heavy-impact source(Tapping, Bang, Ball) and living impact sources(Cleaner, Chair, Toy-car, Soccer ball). And Floor coverings used measurements were various thickness vinyl, laminate(or ply-wood) floor. Especially vinyl floor coverings were very effective method to reduce floor impact.

  • PDF

UNDERWATER NOISE GENERATED BY FISHING GEAR -Stern trawl net- (어구에서 발생되는 소음 -트로올 어구-)

  • YOON Gab Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 1979
  • The main purpose of the present study is to measure the sound spectra of the underwater noises generated by moving trawl net. An underwater recording system was designed to detect underwater noise generated by moving trawl net. The acoustic analysis was made by a heterodyne analyzer (B & K 2010) and level recorder (B & K 2307). The noises generated by the trawl net are appreciably higher (about 10dB) than the background noise in the presence of the fishing vessel. The frequency distribution of underwater noise was DC-6,300 Hz and predominant frequency range was 100-200 Hz, and maximum sound pressure level was $137\;db(re\;1{\mu}Pa)$. Sound pressure level recorded at the ground rope was higher than that recorded at the head rope. The sound pressure level meosured in the course of hawling was higher than that measured in the course of towing. When tile net is being casted tile sound pressure level showed the lowest value.

  • PDF

Aerodynamic acoustics of automotive weather strip protuberance (풍절소음 저감을 위한 웨더스트립 돌출부 형상연구)

  • Kim, Tae-Hoo;Lee, Gye-Ho;Jeon, Seung-Gyeong;Hwang, Jung-Ho;Kim, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2546-2551
    • /
    • 2007
  • Weather Strip(W/S) is a rubber part to proof water, sound and dust for opening and shutting devices including vehicle doors. And it requires high dimension precision and durability to proof water, noise, vibration and etc. But ironically it itself makes some wind noise because of some protuberance with glasses. The air flow analysis of door part of vehicle makes it possible to calculate and find out the cause of wind noise. In previous analysis, we focus on the numerical air flow analysis of the automobile side part. We do 2D-C.F.D first and 3D second. Through simulations, we can calculate the amount of sound pressure level at the glass run and find out the effects of glass run to make wind noise. Finally we can improve shape of glass run to reduce wind noise although it is small amounts of sound pressure reduction compared with total vehicle noise level.

  • PDF

Effect of Sound-Absorbing Materials on the Characteristics of Supersonic Jet Noise (흡음재가 초음속 제트의 소음특성에 미치는 영향)

  • Gwak, Jong-Ho;Kweon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1499-1504
    • /
    • 2004
  • The effects of absorbing materials on the characteristics of supersonic jet noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. In order to investigate the effect of absorbing materials, baffle plates of different materials (metal, grass wool and polyurethane foam) were installed at the exit of the nozzle. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained show that the screech tone amplitude and the overall sound pressure level reduce by using the baffle plates of absorbing materials, compared with the metal baffle plate. It is also found that the characteristics of supersonic jet noise are strongly dependent on the size of baffle plate.

  • PDF

Noise Sources Localization on High-Speed Trains by using a Microphone Array (마이크로폰 어레이를 이용한 고속철도 차량의 소음원 도출 연구)

  • Noh, Hee-Min;Cho, Jun-Ho;Choi, Sung-Hoon;Hong, Suk-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In this paper, noise of Korean high-speed trains (KTX) running at different speed from 150 to 300km/h was measured by a microphone array system. From the measurement, relation between maximum sound pressure levels and train moving speeds of KTX was drawn and a regression coefficient from the relation was also derived. Moreover, increases of SPL with speeds of KTX were analyzed in the frequency domain. From the analysis, sound characteristics of passing-by noise of KTX were provided. Then, dominant noise source areas were obtained from the measurements and propagation patterns of KTX in vertical direction were also investigated. Finally, noise sources of KTX were identified from inspection of noise maps.