• Title/Summary/Keyword: Sound parameter

Search Result 256, Processing Time 0.058 seconds

Identification of Pick up Sound for Laser printers Based on Psychoacoustic Parameters (심리음향의 음질요소를 이용한 레이저 프린터 급지 이음 평가 및 부품 조합 최적화)

  • Lee, Young-Jun;Shin, Tae-Jin;You, Jin;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.853-860
    • /
    • 2012
  • This paper identifies a cause of pick up noise in a laser printer and a relationship between pick up noise and major components related to pick up noise. A pick up sound is affected by many components such as spring force, spring constant, and friction coefficient. Objective evaluation for the pick up sound is difficult because of back ground sound such as operating sound. Especially, a sound between a friction pad and a paper in the process of printing has become an essential issue in an aspect of quality evaluation. However the existing criteria for determining the above sound have solely relied on human's subjective judgments; which highlights the requirement to objectify these criteria. In this paper, the standard of existing pick up noise is established by finding the tonality, which is a psychoacoustic parameter, of noticeable limit sound level. Based on the findings of the method, the study has found factors which cause pick up noise and suggests the substitution of following components of printers such as spring constants, spring force, and the quality of friction pads. As a result, it is confirmed that the proposed pick up noise index has usefulness to classify whether existence of pick up noise with an objective evaluation and not to occur the noise based on design optimized combination of laser printer components.

Sound Design to Improve the Quality of Noise from Home Appliances (가전 제품의 음질 향상을 위한 음설계 연구)

  • 주재만;이제원;오상경;이나경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1122-1127
    • /
    • 2003
  • For many years, engineers in the field of acoustics have used the A-weighted sound pressure level (SPL). Since they were interested just in a reduction of noise, the A-weighted SPL was considered good enough to quantify noise problems. This is reasonable because loudness is usually the most important parameter for most noise problems and A-weighted SPL is often reasonably well correlated with loudness. As the overall noise levels drop, however, other parameters become more important and must be considered, Advent of sound quality came from an understanding that A-weighted SPL only reflects the loudness of a sound. It is obviously impossible to characterize a complex sound with a single number. Although product mostly has revealed physical quantities created by the standpoint of engineers, consumers perceive and evaluate products on the non-physical characteristics, such as feelings, emotions, and experiences in different social and cultural situations. Especially, for the household appliances for instance air-conditioner or refrigerator, the sound is heavily related to the satisfaction of a customer who is a real user of the product and is very important factor to decide purchasing as well as visual design. Therefore, in this research, the general tendency of consumer's psychology was investigated for the appliances. And also, in order to obtain clear guidelines fur sound manipulation, the characteristics of the sound of air-conditioning systems and refrigerators were compared with competitors'. since it is important to overcome the discrepancy between engineering and marketing, the relevance of sound manipulation must be documented from the consumer's perspective. That is the reason why we conducted a consumer and marketing oriented study.

  • PDF

The Phoneme Synthesis of Korean CV Mono-Syllables (한국어 CV단음절의 음소합성)

  • 안점영;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 1986
  • We analyzed Korean CV mono-syllables consisted of concatenation of consonants/k, t, p, g/, their fortis and rough sound and vowels/a, e, o, u, I/by the PARCOR technique, and then we synthesized those speech by means of the phoneme synthesis controlling the analyzed data. In the speech analysis, the duration of consonants decreases in the rough sound, the lenis and the fortis in turns. And also the gain of them decreases in the same tendency. The pitch period increases more and more in vowels following the rough sound, the fortis and the lenis in turns. We synthesized the lenis and the fortis by controlling the duration and the gain of the rough sound, and vowels following the fortis and the rough sound by controlling the pitch period and the duration of vowels following the lenis. As the results, the synthesized speech quality is good and we make certain it is possible to make a rule to the phonome synthesis in Korea speech.

  • PDF

Comparison of vibration and Noise Characteristics for Reciprocating Air Compressor through the Change of Crankshaft Parameters (크랭크샤프트의 형상 변경을 통한 소형 왕복동 공기압축기의 진동 및 소음 특성 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Aminudin, Bin Abu;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.530-533
    • /
    • 2005
  • Recently, modern reciprocating air compressors tend to be smaller and lighter. But, as the development of performance, they have many problems for noise and vibration. For this reason, many researches are processing for the reduction of noise and vibration by arranging cylinders with V/W type. Especially, noise and vibration problems of reciprocating air compressor cause a rotating unbalance of crankshaft, so it needs a change of crankshaft parameters appropriately. Hence in this study, we changed crankshaft parameters to solve the rotating unbalance and compared results in order to verify the noise and vibration reduction between new and original air compressor. According to modify a crankshaft parameter, the improvements of noise and vibration were showed results of spectrum measured at selected points of the air compressor crankshaft housing and sound intensity contours measured at a belt left side, table that figure out characteristics of noise. Furthermore, we analyzed objective sound quality metrics with recording data of systems. The results showed that, the new design has improved the level of the first harmonic of vibration displacement, noise and objective sound quality metrics.

  • PDF

Acoustical Properties of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 음향특성)

  • Lee, Seung;Park, Sang-Jun;Lee, Dong-Hoon;Phae, Chae-Gun;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1341-1346
    • /
    • 2001
  • In this study, the acoustic properties of steel-wire sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values in experiments. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials. Also, the magnitude of the absorption coefficient depended on the characteristic impedance and the propagation constant. As large as the air cavity depth at the rear side of the steel-wire sound absorbing materials, the maximum magnitude of the absorption coefficient occurred at the lower frequency ranges.

  • PDF

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.

Higher Order Statistical Analysis of Sound-Vibration Signal in Rolling Element Bearing with defects (결함이 있는 회전요소 베어링에서 음향-진동 신호의 고차 통계해석)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.49-56
    • /
    • 1999
  • This paper present a study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skewless are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

A method for estimating the shape of a finite cylindrical radiator from its pressure field (방사 음장을 이용한 원통형 방사체의 형상 추정)

  • Kim, Koo-Hwan;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.718-722
    • /
    • 2014
  • A method for estimating the cylindrical shape of a sound radiator is presented. It assumes that sound field can be measured by a linear array. A sound field, due to the radiator vibrating with uniform velocity, can be determined by its shape, size, and orientations. Measured data also can be varying from the array's position. To predict the shape of radiators from these measured data, mathematical relation between geometric parameter and measured information is needed. Assume that a radiator is cylinder, the magnitude and phase of measured pressure is related with the length and diameter of radiator, respectively. In this paper, the method for estimating length and shape of a finite cylinder by using its radiated pressure is proposed and verified through experiment.

  • PDF

A Study on the Condition Monitoring for Rolling Element Bearing using Higher Order Statistical Analysis of Sound-Vibration Signal (음향-진동 신호의 고차 통계해석을 이용한 회전요소 베어링의 상황감시에 관한 연구)

  • 이해철;이준서;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.405-413
    • /
    • 2000
  • This paper present study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skew are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF