• Title/Summary/Keyword: Sound Pressure Characteristics

검색결과 372건 처리시간 0.026초

공동주택에서 중공 슬래브 바닥의 차음 특성에 관한 연구 (A Study on the Characteristics of Sound Insulation at the Circular Voided Concrete Floor in the Multi-Housing)

  • 손철수
    • 한국주거학회논문집
    • /
    • 제11권1호
    • /
    • pp.171-181
    • /
    • 2000
  • The purpose of the resent research is to investigate the characteristics of sound insulation at the circular voided concrete slab in the multi-housing. In order to do this research, the method for field measurement of floor impact sound level was used following the Korea Standard F2810-1996. For the multi-housing, three kinds of circular voided concrete slabs are used to measure the characteristics of sound insulation.The results are as follows; 1.The main factor affecting the characteristics of sound insulation at the circular voided concrete slab in the multi-housing is sound-absorbing materials in the circular tube. 2. The main factor to effect the difference of sound pressure level is circular tube in the concrete slab. 3. The forms of circular tubes effect the characteristics of sound insulation at the circular tube. 4. Sound Pressure Level resulting from the piping direction of circular tubes in little different to octave band level.More study will be needed about the depth and distance of sound insulation materials, and the components of sound insulation materials for the multi-housing.

  • PDF

자성유체 스피커의 음질 성능 및 향상에 관한 실험적 연구 (Experimental study of the sound quality performance and improvement of magnetic fluid speaker)

  • 이무연
    • 한국산학기술학회논문지
    • /
    • 제15권12호
    • /
    • pp.6993-6997
    • /
    • 2014
  • 본 연구의 목적은 자성유체 스피커의 보이스 코일 방열 및 음질 저하 문제를 극복하기 위하여 무향실내에서 자성유체 스피커의 음 왜곡률, 음압레벨 및 주파수 특성과 같은 음질 성능 특성을 고찰하는 것이다. 이를 위하여 자성유체 스피커에서 자성유체 주입량 및 영구자석 자력을 변화시켜가면서 음압 성능을 측정하였다. 그리고 스피커의 음 왜곡률, 음압레벨 및 주파수 특성은 음향시스템 측정 프로그램인 Smarrt를 이용하여 측정하였다. 결과적으로, 자성유체의 주입량은 2.4 ml로 결정되었고, 자성유체를 주입할 경우 음 왜곡률 및 음압레벨은 향상되었다. 자성유체 스피커에서 영구자석의 자력을 8.06 mT에서 9.10 mT로 증가시킬 경우 주파수 특성 및 음압레벨은 더욱 향상되었다. 또한, 자성유체 스피커의 음 왜곡률은 일반 스피커에 비하여 약 0.01% 감소하였다.

스윕을 가진 냉각탑용 축류홴의 성능 특성에 관한 수치해석적 연구 (Numerical Investigation of Performance Characteristics for Cooling Tower Axial Fans with Sweep)

  • 오건제
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.31-37
    • /
    • 2009
  • The purpose of this numerical study was to investigate performance characteristics for cooling tower axial fans with sweep. Performance data for the fans with various sweep angles were obtained in terms of the setting angle at a constant flow rate. Viscous flow calculations were carried out to obtain Performance data of the total pressure rise and hydraulic efficiency. A solution of the Ffowcs Williams-Hawkings equations was used to calculate the sound pressure level at three times fan diameter away from the fan. The calculated performance data well represented performance characteristics of the cooling tower axial fan. The total pressure rise and hydraulic efficiency at the same setting angle decreased with sweep angle. Sound pressure level slightly decreased for the fan with a sweep angle of 10 degree. No significant effect of the sweep geometry was found on the sound pressure level.

  • PDF

가진에 의한 승용차 타이어의 음향방사특성에 관한 실험적 연구 (An Experimental Study on Sound Radiation Characteristics of Radial Tire for a Passenger Car Due to Excitation)

  • 김병삼;이태근;홍동표
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2426-2436
    • /
    • 1993
  • Vibration characteristics of a tire play an important role to judge a ride conformability and sound quality for a passenger car. In this study, the experimental investigation for the sound radiation of a radial tire has been examined. Based on the sound intensity techniques, the sound pressure field and the sound radiation are measured. It turns out that air pressure in tire, tread patterns, and aspect ratio of the tire govern the sound radiation characteristics. Then a numerical analysis for the tire element is conducted. During analysis, the tire element is modelled as an elastic ring. The comparison shows that the numerical output correlates to the experimental data.

수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 - (Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms)

  • 정정호;이병권;연준오;전진용
    • 한국소음진동공학회논문집
    • /
    • 제24권4호
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구 (Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis)

  • 진봉용;이상호;조남효
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

수음실 잔향 시간변화에 따른 바닥충격음레벨 특성 - 잔향실을 중심으로 - (Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in a Reverberation Chamber)

  • 정정호;김정욱;정재군
    • 한국소음진동공학회논문집
    • /
    • 제23권3호
    • /
    • pp.274-281
    • /
    • 2013
  • Field measurement method of heavy/soft impact sound pressure level which is regulated in JIS and ISO has been using in Korea, Japan and Canada. It is reported that heavy/soft impact sound pressure level was varied by the sound field condition of receiving room such as sound absorption power and room volume. In this study, it is checked that heavy/soft impact sound pressure level was affected by the receiving sound field condition. Rubber ball and bang machine sound pressure level was measured in the vertically connected reverberation chamber. In oder to check the effect of receiving sound field on heavy/soft impact sound pressure, sound absorption power was changed with polyester sound absorption blankets with air space and glass wool. The reverberation time at 1 kHz band was changed from 10 s to 0.2 s by sound absorption material. Rubber ball sound pressure level measured without sound absorption material was 58 dB in $L_{i,Fmax,AW}$, but the level was 46 dB with sound absorption treatment. From this result, it is confirmed that sound field correction method is needed in the heavy/soft impact sound pressure level measurement method using bang machine and rubber ball.

광 디스크 드라이브의 공력소음 감소에 관한 연구 (A Study on Reduction of Sound Noise Induced by Disk Rotation in Optical Disk Drives)

  • 송인상;박건순;최학현;김수경;이승엽
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.693-702
    • /
    • 1999
  • We study the characteristics of airflow and sound noise induced by disk rotation in optical disk drives. The characteristics of airflow around a rotating disk surrounded by various tray structures are numerically investigated using a commercial CFD program and then compared with experimental results. Sound pressure and intensity caused by the fluid-structure interactions in the CD/DVD-ROM drive are measured, and the effect of the ariflow on the sound noise and disk vibration is discussed. In order to reduce airflow-induced noise and vibration around the rotating disk, tray geometry is modified. Both numerical and experimental studies implemented with different tray models show that the improved tray model alters the characteristics of the disk-induced airflow, causing the reduction of the airflow-induced sound level.

  • PDF

철도교통소음의 특성에 관한연구 (A Study on the Characteristics of Railroad Traffic Noise)

  • 최형일;박상일;염동익
    • 한국환경과학회지
    • /
    • 제16권7호
    • /
    • pp.771-778
    • /
    • 2007
  • This study has been conducted to achieve the following objectives: First, in order to understand the horizontal propagation and attenuation characteristics for the railroad traffic noise, we selected areas within 100 meters away from the railroad and then selected Saemaul-ho and Mugoongwha-ho as the subjects for our experiment. In this way, we analyzed the horizontal propagation and attenuation characteristics for the traffic noise occurring in diversified areas. Second, in order to understand the vertical propagation and attenuation characteristics for the railroad traffic noise, we measured and analyzed the distributional characteristics of vertical sound pressure levels on each floor of multi-storied apartment buildings according to changes of traffic load and types, and the existence or nonexistence of soundproof walls. For the case of the railroad traffic noise, we also selected Samaul-ho and Mugoongwha-ho as the subjects for our experiment, and we measured and analyzed the different noise levels on each floor of multi-storied apartment buildings from the soundproof wall. The results of Horizontal propagation and attenuation characteristics for the railroad traffic noise are as follows: In cases of the flat land, cutting land, and bridge area, as distance increases, the sound pressure level steadily decreases. The sound pressure level for the bridge area is higher than that of the flat land with a measurement of $5.5{\sim}10.2\;dB(A)$. Vertical propagation and attenuation characteristics for the railroad traffic noise are as follows: The amount of sound pressure level decrease is $14.2{\sim}14.8\;dB(A)$ for Samaul-ho and $13.5{\sim}14.3\;dB(A)$ for Mugoongwha-ho when measuring the vertical sound pressure levels at heights lower than 4.5 m, which indicates a fairly large decrease. At 6 m, the amount of decrease is 8.6 dB(A) for Samaul-ho and 8.2 dB(A) for Mugoongwha-ho, which indicates a small decrease.

충격가진에 의한 진동판의 방사음에 대한 동특성 (Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force)

  • 오재응
    • 한국음향학회지
    • /
    • 제2권1호
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF